

Tuple-Marks
NULLs everyone can live with

v0.1 [mlf-970602]
Mark L. Fussell

1220 N. Fair Oaks Ave, #1314

Sunnyvale, CA 94089
408.734-9068

Mark.Fussell@ChiMu.com

www.chimu.com

Tuple-Marks Page 1 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Abstract

There has been a great deal of discussion about NULL values in relational algebra. There is the argument
that NULLs help us with real database problems of handling lack of information. There is a counter-
argument that NULLs and three-valued logic (3VL) cause major problems with relational algebra and are
unnecessary. These arguments have been very informative and there is no reason to repeat them. Instead I
will change the playing field.

I propose a simple but unusual meaning for NULLs. A NULL describes a tuple, not an attribute value: A
tuple with a NULL attribute belongs to a different relation than a tuple without a NULL attribute. A NULL
becomes a Relation Distinguishing Tuple-Mark. This meaning provides the standard benefits of NULLs: It
helps us model missing information with a small number of relation variables (i.e. tables) and simplifies
understanding and interacting with a database. On the other hand, because NULLs are never attribute
values (or value “marks”) they have no impact on domain operations or the 2VL of basic predicate logic.
These are NULLs I believe everyone can live with.

Background Requirements
This paper rests heavily on the work of E. F. Codd, C.J. Date, and all the rest of the people who helped
grow relational theory. There are many references to their writings within the text and it will be hard to
follow this document without a good understanding of the relational model. For example, you will need to
be familiar with the precise meanings of relation, relation variable, relation value, tuple, domain, attribute,
and value. I will be using these terms because they are more precise and correct for the relational model
than table, column, and row.

It would also help to have read some of the previous debates on NULLs and missing information in
relational modeling although this paper’s approach does not directly participate in those debates.

Tuple-Marks Page 2 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Overview
This paper progresses as follows. First we briefly discuss how the relational model represents knowledge.
We then turn to how it can represent lack of knowledge without any additions to the relational model (e.g.
no NULLs or special values). This approach for representing lack of knowledge works well but has the
problem that the database model can become very complex. The next part of the paper introduces simple
additions to the relational model, which will allow us to simplify the database with as little impact on
relational algebra as possible.

First we introduce the concept of a Multi-Relation Variable that can simplify a complex scheme while still
being as expressive and correct as the original scheme. Next we make Multi-Relation Variables easy to use
through the Relation-Distinguishing Tuple-Mark. The tuple-mark is the main topic for the rest of the
paper: We cover tuple-marks in the NULL debate, comparisons of tuple-marks to other approaches, and
how to implement tuple-marks with SQL. Finally we close with some quotes from related work and a
summary.

Table of Contents
Abstract__1

Background Requirements __1

Overview ___2
Knowledge and Meaning __4

Summary___ 5

Missing Information ___7
Fully Determined Relations __ 7
Predicates that specify known “unknowns” __ 8
Complexity ___ 9
Summary___ 9

Multiple Relations in a Variable ___10
Multi-Relation Variables ___ 10
Interacting with Multi-Relation Variables __ 11

Relation Distinguishing Tuple-Marks ______________________________________12
Interacting ___ 12
Querying __ 12
Extending Projection___ 13

Include-All___13
Eliminate __13
Choose-marked ___14
Summary __14

Adding tuples __ 14
Summary__ 15

Tuple-Marks in the NULL Debate ___16
Looking at previous NULL criticisms ___ 16

Tuple-Marks Page 3 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Codd-1 ___ 16
McGoveran-1 __ 17
Date-1 __ 17

Wrong answers of the first kind___17
Right answers of the first kind__17
Muli-relation variables__18
Unbound variables ___19
Summary __19

Summary__ 19

Further Details___20
Types of Missing Information ___ 20
Relations with no Attributes: Dee and Dum_______________________________________ 21
Outer Joins __ 21
Tuple-Marks in final results ___ 21

Other Approaches to Missing Information___________________________________23
Correct Normalization ___ 23
Special Values__ 23
Multi-relation variables kept independent __ 23

Implementing Tuple-Marks in SQL __24

Related Work __25
Summary ___26

References __27

Tuple-Marks Page 4 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Knowledge and Meaning
To discuss how a database can handle lack of information, we must first define how we put knowledge into
a relational database1. To start, I will bring up the familiar Suppliers relation variable (S).

S
S# SName City …

The first thing me must do is to define what putting a tuple (i.e. row) into S means: We must give S a
predicate. Without stating what S means we can not translate between human knowledge and the database
model. Everything we tell the database in the database’s language will be “true” (i.e. provable) to the
database, and the database will even be able to prove other “new” truths from its model and our axioms.
All of these proofs are meaningless unless a person can interpret them in human terms, which must be the
identical interpretation as the person who designed the database, and the person who entered the data, and
so on. The only way to be sure all these interpretations are identical is to document and disseminate the
meaning of each relation (and attribute, domain, etc.) in the database.

What does S mean? Well it could mean, if there exists a tuple in S then:

S.0: {S#, SName, City, …} – There is a supplier with identity S# who hates the name SName but
likes the city City, and …

But that is unlikely. This does show the importance of precise predicates and human interpretation. More
likely the predicate2 for S is:

S.1: There exists a supplier with identifier S#, who has the name SName, who is located in city
City, and …

So adding the tuple
S# SName City …
S1 Jones London …
States that there exists a supplier with identifier S1, who has the name Jones, and is located in London.

Adding a couple more tuples gives us:

S : S.1
S# SName City …
S1 Jones London …
S2 Smith Bristol …
S4 Eiffel Paris …

We can now ask the database:

Q1: What are the names of suppliers
Q2: What suppliers are in London?
Q3: What suppliers are not in London?

Actually, we can’t. Although the above questions use natural wording, the database can not possibly
answer the questions as posed. They are in terms of our world. We can only ask the database about what it
can prove about its “world” not what is true in our world. We need to do the translation to and from the
database so our questions should reflect that. The corrected questions are:

Q1.2: What names can be proven to be the name of a supplier?
Q2.2: What suppliers can be proven to be in London?

1 See [Date+M 94] for a fuller discussion of this topic.
2 Usually I will not include the relation’s attributes in the predicate specification for space purposes.

Tuple-Marks Page 5 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Q3.2: What suppliers can be proven not to be located in London?

These questions the database can answer. For the first question the database returns:
SName
Jones
Smith
Eiffel

And for the second question it returns:
S#
S1

And for the third question it…can’t answer the question. We have no predicate that states:

There exists a supplier with identifier S#, who is not located in city City
Given how the query (Q3.2) is phrased we would need such a relation (in which we might put S2 and S4 if
they don’t have a location in London). But with what we have at the moment we can only answer the
question:

Q3.3: What suppliers can be proven not to be provably located in London?
Which would then return
S#
S2
S4

But say we really wanted to be able to answer questions like Q3.2, how can we? We could modify the S
predicate:

S.2: There exists a supplier with identifier S#, who has the name SName, who is located only in
city City, and …

We can now answer Q3.2 because we can produce a derived relation value3 of:

NotIn = f(S) : NotIn.1
S# City
S1 Bristol
S1 Paris
S2 London
S2 Paris
S4 London
S4 Bristol
… …
Which has the predicate we wanted:

NotIn.1: There exists a supplier with identifier S#, who is not located in city City

It is impossible to produce the NotIn.1 relation value without modifying the predicate for S or adding a new
base relation variable to record new information. The information simply was not recorded in the database.

Summary
First, for a database to have any meaning we must be able to uniquely translate between human terms and
database statements. For a relational database this requires precisely specifying what each relation,
domain, attribute, and tuple means. It is especially important to remember specifying what a relation

3 This derived value is unrealistic because it would have to include the cartesian product of the extent of S#
and the possible values (minus one) of the Domain City.

Tuple-Marks Page 6 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

means because without a formal specification a user will assume its meaning and misinterpret the answers
to questions.

Second, a database can only answer questions about its world. It is up to the user to make the database’s
world contain the model and information necessary to provide answers that are useful for understanding the
“real world”.

Tuple-Marks Page 7 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Missing Information
Now we can deal with representing the lack of knowledge (or missing information) in a relational database.
We have already seen what a database does not know: everything it has not been told it does know. So we
don’t have a problem of telling the database: “You don’t know this”, we have a problem of telling a
database “You only know this”.

Fully Determined Relations
This is the technique of using only fully determined relations4: We can add any relations needed to express
what we know, but each should only include exactly what we know about those tuples. If this approach can
suitably handle all our needs for representing missing information then we should not add another
mechanism to the relational model. That would be adding complexity without any new expressiveness.

To try out this technique, what if we don’t know where a particular supplier is located? So far our only
base relation is S which has a predicate that states

S.2: There exists a supplier with identifier S#, who has the name SName, who is located only in
city City, and …

Since we don’t know where the supplier is located we can’t use this relation. No problem, we can add a
new relation to our database.

S_NoCity : S_NoCity.1
S# SName …

S_NoCity.1: There exists a supplier with identifier S#, who has the name SName, and …

And if we add two entries to S_NoCity we get:

S_NoCity : S_NoCity.1
S# SName …
S3 DuPont …
S5 Grid …

We now have two relation variables that each express exactly what we know about their tuples. Everything
in fully determined. One of the relations has more information than the other and that is the only sense in
which we are “missing” information. The S_NoCity relation is “half-full” so it could also be considered
“half-empty”.

So how does this new relation and the new tuples affect our last two “tough” questions?

Q2.2: What suppliers can be proven to be in London?
Q3.2: What suppliers can be proven not to be located in London?

The new tuples don’t affect the queries at all. Since the S_NoCity predicate doesn’t mention cities in any
way, it can not affect the outcome of any query that mentions a city. It has nothing to do with it.

On the other hand, the easy question:

Q1.2: What names can be proven to be the name of a supplier?

4 See [McGoveran 94c] and [Date 94b].

Tuple-Marks Page 8 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Should now return:
SName
Jones
Smith
DuPont
Eiffel
Grid

The problem is that asking this question of the database is now a bit cumbersome for the user. We need to
take the two base relations, project SName, and union the results together. Not terribly difficult, but this
requires a user to always remember the two tables when querying. We could also define the following
derived relation value (i.e. View) to make this particular query easier for the user.

S_All = f(S,S_NoCity)
S# SName …
S1 Jones …
S2 Smith …
S3 DuPont
S4 Eiffel
S5 Grid

S_All.1: There exists a supplier with identifier S#, who has the name SName, and …

The user can now query from S_All when asking about names, use S when asking about cities, and use
S_NoCity when asking about … hmm … that isn’t completely clear from our predicates. Why would we
use S_NoCity instead of S_AllNames? What distinguishing trait places a tuple in S_NoCity?

Predicates that specify known “unknowns”
So far we have three predicates (renaming them slightly):

S_City.2: {S#, SName, City, …} – There exists a supplier with identifier S#, who has the name
SName, who is located only in city City, and …

S_NoCity.1: {S#, SName, …} – There exists a supplier with identifier S#, who has the name
SName, and …

S_AllNames.1: {S#, SName, …} – There exists a supplier with identifier S#, who has the name
SName

We appear to have been a bit vague about the meaning of putting a tuple into S_NoCity: why is the set of
cities in S_NoCity different from the set in S_AllNames? We can now decide what “unknown”
information we want to represent in our database by specifying what the known information means. We
could decide that putting a city into S_NoCity means that we don’t know the city for that supplier, or we
could mean that the supplier is a multi-national corporation that is located in multiple cities, or any number
of other meanings. For a fuller discussion of the different possible meanings of missing information see
[McGoveran 94b]. If we needed more than one meaning we would create multiple relations and variables.
For example we could have:

S_UnknownCity
S# SName …
S3 DuPont …

Tuple-Marks Page 9 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

S_MultiNational
S# SName …
S5 Grid …

We would then need to have S_AllNames be a function of all three relations to union them together.

At the moment we choose to simply correct the predicate of S_NoCity:

S_NoCity.2: There exists a supplier with identifier S#, who has the name SName, and … and for
which we do not know the city it is located in.

This new version of the predicate allows us to ask the question:

Q4.1: What suppliers can be proven to be among those that we don’t know their location?
It has no impact on the results of our previous questions:

Q1.2: What names can be proven to be the name of a supplier?
Q2.2: What suppliers can be proven to be in London?
Q3.2: What suppliers can be proven not to be located in London?

Complexity
All these tables and views add complexity to the database and make life more difficult for the user and also
for the manager of these base and derived relations. This is with just one “optional” attribute. We will get
combinatorial explosions of relations if for some suppliers we knew the City but not the Name, and some
we knew the previous months purchase-quota, and so on. We get an even greater explosion if we need to
have multiple meanings for the missing information.

Summary
The approach in this section correctly handled lack of information by adding new predicates that contain
only the information we know. We didn’t need to add any new mechanisms to relational algebra. We did
need to specify our predicates precisely enough to identify why tuples are placed into one predicate over
another. This precision is also what enables a user to know what the results of a query mean.

Unfortunately, managing all the new predicates proved more difficult than we might desire and the
resulting scheme may be difficult for a user to understand. It would be good if there was a mechanism that
can ease this management and simplify the scheme, but it should have as little impact as possible on
relational algebra.

Tuple-Marks Page 10 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Multiple Relations in a Variable
One approach would be to try to reduce the number of relation variables (tables) by allowing one variable
to hold multiple types of relations. In our example we have two base relation variables:

S_City : S_City.2
S# SName City …

S_NoCity : S_NoCity.2
S# SName …

And we have a useful derived relation value of

S_All = f(S_City, S_NoCity)
S# SName …

Which would be calculated as the union of S_City [-City] (projecting away City5) and S_NoCity.

The interdependence among these three relations is very clear, so it would be nice to be able to express and
manage them all together. This will alleviate some of the complexity in using the basic normalized
approach.

Multi-Relation Variables
What if we allowed S_All to have multiple relations within it, where each tuple knew what relation it
belonged to? Something like this:

S_All : (S_City.2, S_NoCity.2, f(…))
Relation S# SName City …
S_City.2 S1 Jones London …
S_City.2 S2 Smith Bristol …
S_City.2 S4 Eiffel Paris …
Relation S# SName …
S_NoCity.2 S3 DuPont …
S_NoCity.2 S5 Grid …
Relation S# SName …
S_All.1 S1 Jones …
S_All.1 S2 Smith …
S_All.1 S3 DuPont …
S_All.1 S4 Eiffel …
S_All.1 S5 Grid …

We seem to have simplified the number of variables and derived values significantly, from three to one.
Notice that we have the same number of relations:

S_City.2: There exists a supplier with identifier S#, who has the name SName, who is located only
in city City, and …

S_NoCity.2: There exists a supplier with identifier S#, who has the name SName, and … and for
which we do not know the city it is located in.

S_All.1: There exists a supplier with identifier S#, who has the name SName, and …

5 See later the next chapter for a description of this projection notation.

Tuple-Marks Page 11 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

This is good. We don’t want to reduce the useful meanings in our database; we just want to reduce how
many entities we have to manage.

He examples has a visual duplication of rows. We repeated all the tuples from S_City and S_NoCity to
specify they are in S_All as well. This “duplication” would happen automatically: S_All is still a derived
value (i.e. the union) of the S_City and S_NoCity tuples within S_All.

Interacting with Multi-Relation Variables
The first question that might come to mind is “How do we interact with a multi-relation variable”? How do
we insert relations into it and how do we query a multi-relation variable? For example, how do we ask:

Q4.1: What suppliers can be proven to be among those that we don’t know their location?

It would appear we would have to add a way to specify which tuples we want to consider from the table.
Something like “SELECT … FROM S_All.{S_NoCity}”. This leads us to as much complexity as if we
had separate tables. This approach may organize the relations and variables but it will not reduce the
complexity of the database scheme.

Tuple-Marks Page 12 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Relation Distinguishing Tuple-Marks
Our problem with multi-relation variables is that it is as complex to distinguish among the different
relations in a single multi-relation variable as if there were multiple separate variables. What if we used a
simpler marker? Instead of having a marker outside the normal attributes of the relations, we can use a
marker within the tuple’s attributes to identify which relation the tuple belongs to. I will call this a Relation
Distinguishing Tuple-Mark (tuple-mark for short) and use a dash “-- ” to indicate it in a table. Using this
approach for our example gives us:

S_All : (S_City.2, S_NoCity.2)
Relation S# SName City …
S_City.2 S1 Jones London …
S_City.2 S2 Smith Bristol …
S_City.2 S4 Eiffel Paris …
S_NoCity.2 S3 DuPont -- …
S_NoCity.2 S5 Grid -- …

The “-- ” tuple-mark is not a type of City or any comment on the value of a tuple’s city: that tuple has no
attribute City. The tuple-mark identifies that the tuple belongs to a different relation than a tuple that does
not have the mark. Supplier-S3 is part of the relation S_NoCity that does not have a city and the mark
simply specifies that to be true.

This approach is only possible if each base relation has a distinguishing set of attributes. For our example
this is true: S_City has attributes of {S#, SName, City, …} and S_NoCity has attributes of {S#, SName,
…}. We could also have a relation S_NoName with attributes of {S#,City,…} and S_NoNameOrCity with
attributes of {S#,…}. We could not handle our two relations S_UnknownCity and S_MuliNational, and we
will return to this problem later.

The full relation S_All is functionally derived as the union of S_City and S_NoCity so it does not need to
be distinguished (all tuples in the variable are also part of S_All). It is not completely clear how we query
on S_City or S_NoCity instead of S_All, but that will be dealt with in the next section.

Interacting
We can now return to the question “How do we interact with this multi-relation variable?” How do we
insert relations into it and how do we query a multi-relation variable? Specifically how do we answer the
questions:

Q1.2: What names can be proven to be the name of a supplier?
Q2.2: What suppliers can be proven to be in London?
Q3.2: What suppliers can be proven not to be located in London?
Q4.1: What suppliers can be proven to be among those that we don’t know their location?

Querying
A query over a multi-relation variable will only consider (be restricted to) the tuples for which the query is
applicable. A query is applicable to a relation if all the attributes the query mentions exist for that relation.
For example, the attribute SName exists in the relation S_City and S_NoCity, so a query “SELECT SName
FROM S_All” would consider all the tuples:

Tuple-Marks Page 13 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

S# SName …
S1 Jones …
S2 Smith …
S4 Eiffel …
S3 DuPont …
S5 Grid …

If a query mentions City (e.g. “SELECT City FROM S_ALL”) it would only consider the tuples that have a
relation with an attribute City:
S# SName City …
S1 Jones London …
S2 Smith Bristol …
S4 Eiffel Paris …

This allows us to answer Q1-Q3 and gives the same answers as our original S_City, S_NoCity, and S_All
solution. So far so good, but to make any more progress requires extending the relational algebra.

Extending Projection
To answer Q4 we need to be able to retrieve the tuples that have distinguishing marks that identify them to
be part of the S_NoCity relation. This sounds like a restriction but it can’t be; we have the rule that tuples
without an attribute will be immediately discarded so they will never make it to the restriction stage. We
need to choose the tuples with a mark in a attribute and at the same time throw away that attribute (to
prevent the tuple from being later discarded). We can do this by extending the “innermost” projection
operation: the direct projection of our multi-relation variable “before” it is involved with the rest of the
query.

Although not part of SQL it will be easiest to use and extend C.J. Date’s projection notation:

A [X, Y, …, Z]
Which produces a relation value subset of A “obtained by eliminating all attributes not specified in the
attribute commalist and then eliminating duplicate (sub)tuples from what is left).” [Date 95, Page 151]. In
this notation Q1 can be answer by “S_ALL [SName]” and finding all the cities of suppliers can be
answered by “S_ALL [City]”.

To the projection notation I will add three new pieces: the include-all (“*”) indicator, the eliminate (“-”)
prefix and the choose-marked (“!”) prefix. The first two are primarily convenience additions to the
projection syntax and they have nothing to do with multi-relation variables. They are added to the
projection notation because they conceptually prepare it for the third addition, which will allow us to
discriminate among different marked tuples.

Include-All
The include-all indicator is similar in meaning to the SQL version: it specifies that all the attributes of the
relation should be used included in the projection and (by itself) is equivalent to the identity projection.

A ≡ A [*]

Eliminate
The eliminate prefix allows you to specify that an attribute should be eliminated from the projection instead
of included in it. This allows you to say “S_ALL [*,-City]” and get

Tuple-Marks Page 14 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

S# SName …
S1 Jones …
S2 Smith …
S4 Eiffel …
S3 DuPont …
S5 Grid …
Instead of specifically stating the attributes to include “S_ALL [S#, SName, …]”. If you have a projection
that has only eliminated attributes you can leave off the include-all indicator:

S_ALL [-X, -Y, -Z] ≡ S_ALL [*, -X, -Y, -Z]

Choose-marked
Finally, the choose-marked prefix is similar to the eliminate prefix in that it will eliminate the attribute
from the projection, but in addition it will also eliminate tuples (restrict the result to not include tuples) that
have anything other than a tuple-mark (Relation Distinguishing Mark) for that attribute’s value. For our
example, we can select the tuples that are part of S_NoCity by the projection “S_ALL [*, !City]” which
would give:
S# SName …
S3 DuPont …
S5 Grid …
Now we can answer Q4:

Q4.1: What suppliers can be proven to be among those that we don’t know their location?
with “S_ALL [S#, !City]”

It may seem strange to have a projection operation perform a restriction but notice that this pseudo-
restriction is complementary with the pseudo-restriction performed by including the attribute in the
projection. “S_ALL [S#, SName, City]” gives:
S# SName City
S1 Jones London
S2 Smith Bristol
S4 Eiffel Paris

“S_ALL [S#, SName, !City]” gives:
S# SName
S3 DuPont
S5 Grid
In both cases the restriction occurs in the process of getting rid of tuple-marks in the particular attribute, in
the first case it eliminates the marked tuples and in the second it eliminates the non-marked tuples.

Summary
To handle multi-relation variables in queries we proposed two additions to relational algebra.

1. A tuple with a marked attribute is excluded from all queries that mention that attribute
2. A choose-marked attribute projection will eliminate that attribute from the projection and will

restrict the result to only include tuples that have a tuple-mark for that attribute

These will be the only additions to relational algebra. There is no need to add three-valued logic or change
any domain operations’ behavior. This is a much smaller change to relational algebra compared to
supporting “normal” NULLs.

Adding tuples
To add a relation-distinguishing tuple-marked tuple to the database we can use the same approach as is
used for NULLs. We can “pretend” to set the value of the attribute to “NULL” which will instead result in
the tuple being marked as belonging to a different relation which does not include that attribute. As

Tuple-Marks Page 15 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

mentioned earlier in chapter, to do this operation requires that each relation in a multi-relation variable be
distinguishable by its set of attributes. For our example, we can use

INSERT INTO S_ALL (S#, SName, City) VALUES (“S6”, “Java”, NULL)
To add an S_NoCity tuple.
Relation S# SName City …
S_NoCity S6 Java -- …

Because NULLs are being used to identify the tuple’s relation this may cause confusion with other
insertion features that use NULLs as a flag. For example, if a particular table uses NULLs for a default
value it will effectively change the inserted tuple’s relation before completing the insertion. Actually
adding a tuple with a particular relation (that does not include the defaulted attribute) may be impossible
because of this.

Summary
The approach of using multi-relation variables allows us to simplify some databases and especially
databases with missing information. If two or more relations are related to each other by them having
similar but slightly different attributes than these relations can “share” the same multi-relation variable.
Although adding this concept of multi-relation variables with marked-tuples adds complexity to the
relational model, database scheme’s can be made much less complex. What used to require two, three, or
more base relation variables and multiple derived relation values (views) can now be merged into a single
variable. Doing so has no impact on what can be express with the database: the defined and derivable
relations are the same.

Using Relation Distinguishing Tuple-Marks made it possible to easily interact with multi-relation variables
and only required a couple additions to the relational model:

1. A tuple with a marked attribute is excluded from all queries that mention that attribute
2. A choose-marked attribute projection will eliminate that attribute from the projection and will

restrict the result to only include tuples that have a tuple-mark for that attribute
This appears to be a good approach because of its simplicity, its limited impact on the relational model, and
possibly because of its similarity to how NULLs are used now. Tuple-marks have many advantages over
NULLs as currently implemented or considered because:

1. Tuple-marks do not use three valued logic
2. Tuple-marks have no impact on domains and domain operations

We will return to further detail tuple-marks in a later chapter, but first we should consider how the
approach handles the issues brought up in the NULL debate.

Tuple-Marks Page 16 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Tuple-Marks in the NULL Debate
Although Tuple-Marks could be proposed as an addition to the basic relational model (without NULLs)
that is not the current historical context. There has been much discussion of the value of NULLs and their
associated problems. Although tuple-marks are a completely different mechanism from NULLs, they are
similar enough in use that it would be reasonable to see how tuple-marks would hold up in the debates. If
tuple-marks have as many issues as NULLs than they won’t be a better alternative to them.

Looking at previous NULL criticisms
I will select a few example criticisms from the authors who have written on the NULL topic. Some of
these authors believe NULLs are a useful mechanism and some believe NULLs and 3VL cause major
problems. In either case there are arguments about correct relational modeling and the correct behavior of
relational operators (e.g. queries) in the face of missing information. I will place tuple-marks in the middle
of the fray and say they can handle the arguments from both sides.

Codd-1
The example running through the first part of this paper was identical to the one in [Codd 90 § 9.2] where
he discusses criticisms towards his approach for missing information. In that section he criticizes the
results of a Special Value approach (at the time named as and mixed with the default value concept)

S_All : (S_City, S_NoCity)
S# SName City …
S1 Jones London …
S2 Smith Bristol …
S3 DuPont -- …
S4 Eiffel Paris …
S5 Grid -- …
Which I will define as having the same relations (predicates) as earlier in this paper:

S_City: There exists a supplier with identifier S#, who has the name SName, who is located only in
city City, and …

S_NoCity: There exists a supplier with identifier S#, who has the name SName, and … and for
which we do not know the city it is located in.

S_All: There exists a supplier with identifier S#, who has the name SName, and …

The questions posed of this table are:

Q1: Find the suppliers in London
Q2: Find the supplier NOT in London

To rephrase these in terms the database can understand gives:
Q1a: Find the suppliers that can proved to be in London.
Q1b: Find the suppliers that can proved to be possibly in London.
Q2a: Find the suppliers that can proved to be NOT in London.
Q2b: Find the suppliers that can proved to be possibly NOT in London.

Q1a is easy: “ SELECT S# FROM S WHERE City = ‘London’ ”. By mentioning City we automatically
restrict the considered tuples to those with a relation that includes City (so we drop S3 and S5).
Q1b requires a union between Q1a and “SELECT S# FROM S [!City]”.
Q2a is easy again: “ SELECT S# FROM S WHEREH City <> London ”
Q2b again requires a union between Q2a and “SELECT S# FROM S [!City]”.

Tuple-Marks Page 17 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Specifying each query correctly requires understanding the relation definitions above, but the tuple-marks
give correct and predictable results.

McGoveran-1
David McGoveran [McGoveren 94a,b,c] covers properly normalizing a database to avoid needing NULLs.
This approach is the best first approach possible and is what I superficially described in Chapter 5. But it
can lead to a significant increase in tables and database complexity. Using a slightly modified version of
one of McGoveran’s examples:

Vehicles : (PV, UPV, UPMV)
VIN Make Model Color
1 Ford Escort Green
2 Pontiac Grand Prix Red
3 Porsche Carrera --
4 Chrysler LeBaron --
5 DeLorean -- --

PV: PaintedVehicles: There exists a care with vin VIN, made by Make, of model Model, with
color Color

UPV: UnpaintedVehicles: There exists…
UPMV: UnpaintedModellessVehicles: There exists…

If we were to divide this table using the different relations involved we would get a total of three tables and
would have to create two views to get “Makes” and “Makes and Models” for a user to easily query on. By
keeping it all in one multi-relation variable with tuple-marks to distinguish the different relations we have
much less complexity of the database scheme.

Date-1
C.J. Date discussed why three-valued logic is a mistake in [Date 95c] and in which he shows what answers
supplied by 3VL are considered wrong answers. Based on the discussion of database knowledge and the
use of tuple-marks I will show what answers tuple-marks would provide and respond to those that are
considered wrong answers.

Wrong answers of the first kind
Date’s first example of a wrong answer is the result of the query

SELECT E#
FROM EMP
WHERE Job = ‘Clerk’
OR NOT Job = ‘Clerk’;

Assuming a relation and variable of:

EMP
E# Name Job

Date asserts that this query should return “all employee numbers” even when some tuples have JOB =
NULL.

Right answers of the first kind
Although Date’s assertion seems intuitive and correct, with our multi-relation variables we can see that
Date is incorrect. If there were two relation variables:

EMP_OnJob

Tuple-Marks Page 18 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

E# Name Job

EMP_NoJob
E# Name

We would not expect that

SELECT E#
FROM EMP_OnJob
WHERE Job = ‘Clerk’
OR NOT Job = ‘Clerk’;

would return any of the entries in EMP_NoJob.

It is also nonsensical to form the query:

SELECT E#
FROM EMP_NoJob
WHERE Job = ‘Clerk’
OR NOT Job = ‘Clerk’;

but if the query were formed it would certainly return no tuples: Job is unmentioned and has no value, not
either ‘Clerk’ or something other than ‘Clerk’. We can see this by translating the query into a more formal
question:

Q1: Find the employees that can proved to have a Job ‘Clerk’ or can be proved to be have a Job that
is not ‘Clerk’.

This does not mean we can’t find employees who are not on the Job ‘Clerk’ simply because they aren’t on
any job, but we have to express it in a sensible manner given our relation predicates. The predicate of
EMP_NoJob is likely to be:

EMP_NoJob: There exists an employee with id E# and name Name who is not currently on a job.

So our second query would be:

SELECT E#
FROM EMP_NoJob;

We simply select all the tuples from EMP_NoJob to determine who is not on any particular Job.

To get the answer to the question:

Q1: Find the employees that can proved to not be on the Job ‘Clerk’
We can form the query:

(SELECT E#
FROM EMP_OnJob
WHERE Job = ‘Clerk’
OR NOT Job = ‘Clerk’)
 UNION
(SELECT E#
FROM EMP_NoJob) ;

Requiring the separate expressions joined together makes sense: we are dealing with two different relations
that have different attributes and predicates.

Muli-relation variables
For multi-relation variables we have the same problem and the same results but it is slightly more obscured
by them sharing the same variable (table). Our relations and variables are:

EMP : (Emp_OnJob, Emp_NoJob)
E# Name Job

Tuple-Marks Page 19 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

To get the answer to the question:
Q1: Find the employees that can proved to not be on the Job ‘Clerk’

We must form the query:
(SELECT E#
FROM EMP
WHERE Job = ‘Clerk’
OR NOT Job = ‘Clerk’)
 UNION
(SELECT E#
FROM EMP [!Job]) ;

Where the projection of EMP using a choose-marked allows us to get to the tuples that are members of the
relation Emp_NoJob.

Unbound variables
The argument Date proposes for why the original query should return all tuples would be correct if a
“NULL” represented an unbound attribute-value variable which during a Prolog-like unification (see
[Clocksin+M 81]) actually took on all possible values of that attribute-value. In that case the condition
would apply to all tuples (because all had a relation that mentions Job) and the WHERE would be a
tautology. A relation distinguishing tuple-mark is not an unbound attribute-value variable (nor anything to
do with an attribute-value) so this reasoning does not apply to it.

Summary
Tuple-marks do not cause wrong answers. The answers to queries over a multi-relation variable will be
correct for the applicable relations for that variable. Users will have to remember that certain variables
have multiple relations and must form queries appropriately to use the relations desired.

Date’s arguments over the problems with 3VL causing wrong answers are cause by NULLs being
considered an attribute value in a single relation. Tuple-marks are not attribute values.

Summary
I believe relation-distinguishing tuple-marks have correct behavior in the relational model and are superior
to both attribute NULLs (3VL) and special values for handling missing information.

Tuple-Marks Page 20 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Further Details
This chapter fleshes out some more details of the concept of a Relation Distinguishing Tuple-Mark.

Types of Missing Information
Earlier I mentioned that there could be multiple meanings of missing information, which would have to
have independent relations and relation variables. The example was

S_UnknownCity
S# SName …
S3 DuPont …

S_MultiNational
S# SName …
S5 Grid …
Which have identical attribute sets and the same “missing” information (the City) but have different
meanings for the missing information. For example, maybe all MultNationals must be located in Delaware
so their location is guaranteed to not be in London which is quite different from just not knowing the
location (so it could be in London).

The tuple-marks discussed so far do not allow for a multi-relation variable to have two relations with the
same set of attributes. There would be no way to distinguish among the tuples. There is nothing that
prevents this if the appropriate mechanisms are added. If there were multiple marks available (“--m1--”, “-
-m2--”, etc.) and the choose-marked restriction could select which mark, we could have any number of
relations in a single variable:

S_All : (S_City.2, S_NoCity.2)
Relation S# SName City …
S_City S1 Jones London …
S_City S2 Smith Bristol …
S_City S4 Eiffel Paris …
S_UnknownCity S3 DuPont --m1-- …
S_MultiNational S5 Grid --m2-- …

We can answer the questions:

Q1: Find the suppliers that can proved to be in London.
Q2: Find the suppliers that can proved to be possibly in London.
Q3: Find the suppliers that can proved to be NOT in London.
Q4: Find the suppliers that can proved to be in Deleware

Using the following queries:

Q1: SELECT S# FROM S_All WHERE City = ‘London’.
Q2: Q1 UNION (SELECT S# FROM S_All [!m1!City])
Q3: (SELECT S# FROM S_All WHERE City <> ‘London’) UNION (SELECT S# FROM S_All
[!m2! City])
Q4: (SELECT S# FROM S_All WHERE City = ‘Deleware’) UNION (SELECT S# FROM S_All
[!m2! City])

Although adding the functionality to the database appears to mostly a syntax addition, it is certainly a much
more difficult mental model to keep track of. The invisibility of the multiple overlapping relations would
significantly hinder a user from understanding the database.

Tuple-Marks Page 21 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Relations with no Attributes: Dee and Dum
What if we have only a single attribute column that can be tuple marked? For example:

Names : (Name, NoName)
Name
Jones
Smith
DuPont
--
What does it mean to have a “NULL” in the only column left? Well, to know that we have to define what
relations we have. Suppose we have the following two base relations.

Name: {Name} – There exists a supplier with the name Name.
NoName: {} – There exists a supplier for whom we do not know the name.

So by adding a tuple with the relation NoName we specify that there exists a supplier for whom we do not
know the name, where otherwise we know all the names of the suppliers. The relation for Names as a
whole is:

Names: {} – There exists a supplier

We can ask several interesting (informally phrased) questions:

Q1: What are the names of the Suppliers? “Names [Name]”
Q2: Are there any suppliers without names? “Names [!Name]”
Q3: Are there any suppliers? “Names []”

Note that Q2 and Q3 will return a relation with no attributes and either zero rows or one row. These are
Tweedle-Dum and Tweedle-Dee respectively (see [Warden 90]). Tuple-marks have no problem with them.

Outer Joins
Tuple-Marks can be used just as NULLs are normally used in outer joins. The number of intermediary
relations will be quite extensive and it may be difficult to process the intermediary results. [To be
completed]

Tuple-Marks in final results
It is expected that the final results of a query would include the tuple-mark “NULL”s for presentation and
application purposes when no explicit mention of the attribute occurred within the query. For example, a
query of
 SELECT * FROM S_ALL
Would return
S# SName City …
S1 Jones London …
S2 Smith Bristol …
S4 Eiffel Paris …
S3 DuPont -- …
S5 Grid -- …

Although
 SELECT * FROM S_ALL [*]
would return
S# SName City …
S1 Jones London …
S2 Smith Bristol …
S4 Eiffel Paris …

Tuple-Marks Page 22 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Note that the SELECT operation is performing two operations: it is projecting as part of the query and it is
ordering the output columns for the application API. The second has nothing to do with the relational
model itself so it would be nice to order the columns without implying a projection and without removing
tuples that have tuple-marks in that column.

Tuple-Marks Page 23 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Other Approaches to Missing Information
Multi-relation variables and Tuple-Marks are meant to replace using standard NULLs, which require three-
valued logic. On the other hand, tuple-marks are meant to augment most other approaches for representing
missing information. These other approaches can be more appropriate in general or just for certain
circumstances within a model.

Correct Normalization
Correct and fully determined normalization6 should certainly be the first approach for any database.
Having a couple extra relation variables in a database is simpler than adding the concepts of multi-relation
variables and NULL-marked tuples. It is only when the scheme will get unmanageable from many
“optional” attributes that multi-relation variables may be beneficial.

Special Values
Extending a domain to have special values is another valid approach for representing missing information7.
This requires extending the domain so it understands how operations interact between “normal” values and
the special values, but once that domain extension is accomplished it can be used by all attributes needing
that domain throughout the database.

The main problem with (or feature of) special values is that they will be included in all “normal” value
comparisons other than equals8. This leads to the special value results being returned for questions like

What suppliers can be proven to be in a location other than London?
This will return suppliers that have a location of “NotApplicable” and “Unknown” by default. These then
have to be filtered out of the results if they aren’t desired.

Tuple-marks have the opposite property. Marked tuples will be excluded from results of a query that has
any type of operation on a marked attribute and in these cases the tuples will have to be explicitly included
(usually by dealing with their relation independently) if they are desired.

Integrated multi-relation values
David McGoveran suggests [McGoveran 94c] multi-relation values and variables should be an integral part
of the relational model. This would imply all relational operations could return sets that contain different
types of tuples. Although an interesting concept, I am not sure that the added complexity would be
worthwhile. The relational model is currently very simple but, even so, is frequently misunderstood. A
more sophisticated model would be more likely to be confused.

6 See [McGoveran 94c] and [Date 94b].
7 See [Date 96,97a-c] and the other works by C.J. Date for a full discussion of the Special Values topic.
8 This isn’t strictly true with good domain support. With good domain support you can define the domain’s
operations as failing or implementing whatever truth table you desire. See [Date 97a].

Tuple-Marks Page 24 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Implementing Tuple-Marks in SQL
SQL does not have Relation Distinguishing Tuple-Marks, it has NULLs that use 3VL. SQL also does not
have a choose-marked attribute projection operator. Even if everyone agreed that tuple-marks were the
correct approach to missing information it would take a long time for the SQL standard and then the
database vendors to change over. What do we do in the mean time?

Fortunately tuple-marks can be simulated within SQL. The only requirements for tuple-marks is for
queries to include and eliminate particular tuples based on whether they are applicable. Although the SQL
query engines won’t do this for you automatically, you can manual code queries to have the correct results.

Returning to our original example of suppliers in S_All.

S_All : (S_City, S_NoCity)
Relation S# SName City …
S_City S1 Jones London …
S_City S2 Smith Bristol …
S_City S4 Eiffel Paris …
S_NoCity S3 DuPont -- …
S_NoCity S5 Grid -- …

If we query over this table we need to simulate what a tuple-marked query engine would do. With a total
of three relations in this table we have three options: we may want to ask questions that apply to S_All,
S_City, or S_NoCity. This should be the first question for any query involving this table. Depending on
the answer to that question we will have to:

1. Remove the rows that are inapplicable
2. Remove (or ignore) the columns that are inapplicable

To remove inapplicable rows we will ask either for rows “WHERE City NOT NULL” (to get S_City) or
“WHERE City IS NULL” (for S_NoCity). To remove inapplicable columns we can “SELECT S#, SName,
…” and leave out City. Together these two techniques (used carefully) will allow us to simulate the tuple-
marked query engine.

For some of our previous examples:
Tuple-marked Relation SQL Version
SELECT City FROM S_All S_City SELECT City FROM S_All WHERE City NOT NULL
SELECT SName FROM S_All S_All SELECT SName FROM S_ALL
SELECT SName FROM S_All
WHERE City = ‘London’

S_City SELECT SName FROM S_All WHERE City =
‘London’ AND City NOT NULL

SELECT SName FROM S_All
[!City]

S_NoCity SELECT SName FROM S_All WHERE City NOT
NULL

(SELECT S# FROM S_All
WHERE City <> ‘London’)
UNION (SELECT S# FROM
S_All [!City])

S_City,
S_NoCity

(SELECT S# FROM S_All WHERE City <> ‘London’
AND City NOT NULL) UNION (SELECT S# FROM
S_All WHERE City NOT NULL)

The SQL Version can be significantly more complex that the natural SQL but its results will be consistent
with tuple-marked queries and two-valued logic instead of the strange behavior exhibited with SQL’s 3VL.

Tuple-Marks Page 25 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Related Work
The references attached at the end of this document show some of the other work done on this subject. Just
to give a feel for how close people’s thoughts were to Tuple-marks I include a few quotes:

David McGoveran

“...The lack of a value for a property should automatically imply an appropriate modification of
the relation predicate.”

C.J. Date
“To say that certain properties might not be held by certain of those entities is thus a
contradiction in terms – it's to say that those entities aren't of that type after all!”

David McGoveran

“Furthermore, conditional operators would then be understood as operations on multiple
relationships (masquerading as single relationships) and having a multiple entity result (again
masquerading as a single entity).”

James R. Alexander

“...what my database "knows" and how it "knows" is clear: It knows only what it contains and
what it contains, I put there..”

David McGoveran
“Whenever a value in a non-key base table column is optional (that is, the database designer
permits it to be null), the column represents a conditional property or meaning criterion. Such
columns indicate that multiple entity types are being represented in a single table. Each of these
entities have distinct relation predicates”

Tuple-Marks Page 26 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

Summary
The topic of missing information and using NULLs in the relational model has had a very good debate over
the years. The information from these arguments has been very useful and has improved technology and
practices. Unfortunately this debate has not yet lead to a generally agreeable solution.

I believe multi-relation variables and Relation Distinguishing Tuple-Marks are part of that generally
agreeable solution. Tuple-marks provide all the benefits of NULLs (and Codd’s marks) without the
corresponding problems. Tuple-marks allow a single relation variable (table) to hold tuples from multiple
different relations and the query engine can determine which relations and tuples are appropriate for a
particular query. This is accomplished without any negative side effects: it does not require three-value
logic or any changes to domains and domain operations.

The only cost of tuple-marks is the conceptual complexity of having multiple relations within a single
variable. This causes a tradeoff between having many simple fully determined relation variables and
having fewer complex multi-relation variables. Tuple-marks seem to be the minimum cost approach for
making this tradeoff. They can even be manually implemented using current SQL databases.

Multi-relation variables and tuple-marks can enhance the relational model in a positive manner. They help
model missing information and interdependent relations. Along with proper normalization, fully
determined relations, and full domain support, Relation Distinguishing Tuple-Marks provide a general
solution to missing information. In this case, something is much better than nothing.

Tuple-Marks Page 27 of 27
Copyright © 1997, Mark L. Fussell February 6, 2013

References
Alexander 94a James R. Alexander. Letter in Database Programming & Design, 7(3): 11, March 1994.

Clocksin+M 81 W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag 1981.

Codd 90 E.F. Codd. The Relational Model for Database Management, Version 2. Addison-
Wesley, Reading, MA, 1990

Codd+D 93a E.F. Codd and C.J. Date. “Much Ado about Nothing” in Database Programming &
Design, 6(10): 45-53, October 1993.

Date 90 C.J. Date. Relational Database Writings 1985-1989. Addison-Wesley, Reading, MA,
1990.

Date 92 C.J. Date. Relational Database Writings 1989- 1991. Addison-Wesley, Reading, MA,
1992.

Date 94 C.J. Date. “Relations and Their Meaning” in Database Programming & Design, 7(12):
19-22, December 1994.

Date 95 C.J. Date. An Introduction to Database Systems. Addison-Wesley, Reading, MA, 1995.

Date 95b C.J. Date. Relational Database Writings 1991- 1994. Addison-Wesley, Reading, MA,
1995.

Date 95c C.J. Date. “Why Three-Valued Logic Is a Mistake” in [Date 95b] : 22-29.

Date 96 C.J. Date. “Faults and Defaults – Part 2 of 5” in Database Programming & Design, 9(12):
15-19, December 1996.

Date 97a C.J. Date. “Faults and Defaults – Part 3 of 5” in Database Programming & Design, 10(1):
16-20, January 1997.

Date+H 97 C.J. Date with Hugh Darwin. A Guide to the SQL Standard – Fourth Edition. Addison-
Wesley, Reading, MA, 1997.

Date+M 94b C.J. Date and David McGoveran. “A New Database Design Principle” in Database
Programming & Design, 7(7): 46-53, July 1994.

Ferg 94 Stephen Ferg. Letter in Database Programming & Design, 7(7): 9-10, July 1994.

McGoveran 93a David McGoveran. “Nothing from Nothing” in Database Programming & Design, 6(12):
33-41, December 1993.

McGoveran 94a David McGoveran. “Classical Logic: Nothing Compares 2 U” in Database Programming
& Design, 7(1): 54-56, January 1994.

McGoveran 94b David McGoveran. “Can’t Lose What You Never Had” in Database Programming &
Design, 7(2): 43-48, February 1994.

McGoveran 94c David McGoveran. “It’s In the Way That You Use It” in Database Programming &
Design, 7(3): 54-63, March 1994.

Warden 90 Andrew Warden. “Table_Dee and Table_Dum” in [Date 90].

