
The ABC Development Process
v0.5 [mlf-980915]

ChiMu Corporation
1220 N. Fair Oaks Ave, #1314

Sunnyvale, CA 94089

Phone: 408 734-9068
Email: info@chimu.com

www.chimu.com

ii The ABC Development Process

v0.5

The ABC Development Process

Copyright © 1998, ChiMu Corporation. All rights reserved.

iii

Table of Contents
1 Overview___ 5

1.1 Prerequisites __ 5
1.2 Process Focus__ 5
1.3 Related Resources __ 6
1.4 Attributions ___ 6

2 Introduction__ 7
2.1 Sources ___ 7

ABC Process Documents ___ 8
External Sources ___ 8

Short List__ 8
Medium List ___ 8
Long List__ 9
Short Technical List ___ 9

2.2 Major Concepts__ 9

3 High-Level Process ___ 11
Organization ___ 11
Notation Description ___ 11

3.1 Macro-level Process Model ___ 12
Walkthrough__ 12
Definitions ___ 12
ABC Specifics___ 13

3.2 Incremental Development __ 13
Walkthrough__ 14

Increments__ 14
Review & Improve ___ 14
Increment-0___ 15
Summary of Walkthrough__ 15

Definitions ___ 15
Discussion ___ 15

Requirement Changes ___ 15
Project Management __ 16
Increment Progression___ 16

ABC specifics ___ 17
Increment-0___ 17
Increment-1___ 18
Increment-1b__ 18
Increment-2___ 18

3.3 Use Cases and Conceptual Models ___ 18
Walkthrough__ 19

User Requirements ___ 19
Modeling___ 19
Internal __ 20
Interconnection and Correlation ___ 20

Definitions ___ 20
Discussion ___ 20
ABC Specifics___ 20

3.4 Implementation Architectures___ 20
3.5 Summary __ 21

4 People in the Process__ 23

iv The ABC Development Process

v0.5

4.1 Introduction__ 23
Notation Description ___ 23

Definitions ___ 23
The Simplest Process Model ___ 23

Definitions ___ 24
Splitting Specification from Implementation _______________________________________ 24

Definitions ___ 25
Management__ 26
Roles into Teams __ 26
Summary __ 27

4.2 Full Team-Role Model ___ 27
Walkthrough__ 28
Definitions ___ 28
Discussion ___ 28
ABC Specifics___ 28

4.3 Meter-Rocks: Getting Specific Enough to Manage ____________________________ 29
ABC Specifics___ 30

5 Other Process Aspects ___ 31
5.1 Risk Management ___ 31

Discussion ___ 31
ABC Specifics___ 31

5.2 Success Identification __ 31
5.3 Increment Iterations ___ 31
5.4 Modeling Progression __ 32

ABC Specifics___ 32

6 Appendix-A: Glossary ___ 35
Type __ 35

Definitions ___ 35

5

v0.5

1 Overview
This document describes the life cycle process used by the ABC project, the motivations for that life cycle,
and how that life cycle was determined and implemented. Our primary goal is to document ABC’s process
so other teams can gain a better understanding of it and use it to help develop processes for other teams.
Our secondary goal is to continue documenting and crystallizing ABC’s process for use within the ABC
team. The ABC project was a specific project for the XYZ company, but names have been changed and
any proprietary materials removed. This makes the material available to a wider audience, with only a few
holes.

The ABC project’s process has several salient characteristics that impact how it can be described. (1) It is
currently in use within XYZ. (2) It has had several months to work our rough edges. (3) It was primarily
guided with a core set of goals. (4) It is principally based on an integration of several documented and
mainstream development practices. So to describe the process we can alternate from the very concrete (“the
ABC team does this”) to the more general (“Booch suggests doing this”). We can also leverage existing
writings and just describe the differences from those writings and how they were integrated into the ABC
process. We hope that connecting these differing abstraction layers and perspectives will both make the
process more understandable and make the concepts more applicable to other teams.

1.1 Prerequisites
This document refers directly and indirectly to many books and to the ABC documentation. The specific
books are discussed in the following chapter, as are the sources for ABC documentation. Although many of
these sources can be read concurrently with this document, at least a few of them should be reviewed ahead
of time or the material within here will be difficult to understand or put in context. It is recommended that
you are familiar with the following resources.

Most XYZ readers will have had SELECT training, but if you have not had this training you should review
one of the following SELECT documents:

Component-Based Development for Enterprise Systems Allen+F 98
Object-Oriented Analysis & Design for Client/Server

Development
SELECT-1

You should be familiar with at least one of the following (preferably at least the first):
Software Project Survival Guide McConnell 98
Surviving Object-Oriented Projects, A Manager’s Guide Cockburn 98
Object Solutions: Managing the Object-Oriented Project Booch 96

It would be good if you were familiar with certain ABC resource locations. Three very important ones are:
ABC Development Process …/public/ABC/Development/Process
ABC Development Progress …/public/ABC/Development/Progress
ABC Development Standards …/public/ABC/Development/Standards
ABC Learning Resources …/public/ABC/Learning

These locations are cross-linked to other resources in ABC and OTC directories. Currently the ABC web-
site is not a major resource. Most ABC process documents will be directly referenced or incorporated into
this document as needed, but the above locations will have more details and related documents.

1.2 Process Focus
The discussion within this document of the ABC project and team is primarily focused on the development
effort beginning in January, 1998. The ABC feasibility and preliminary analysis work was done before that
time period by a different team using different processes. These previous processes and their deliverables

6 The ABC Development Process Chapter 1
Overview

v0.5

are considered (abstractly) part of the ABC development process, but these previous processes are not
described in any detail. Also, no part of the deployment process (e.g. hardware considerations) is being
covered in this document.

1.3 Related Resources
The best resources to use with this document are the people at XYZ that have experience with ABC and its
process. Foremost this would be the ABC team. It would also include OTC team members and many of the
supporting organizations with IS: DA, DBA, QA, and so on. As the process is described further some of
these related resources will be more obvious.

1.4 Attributions
This document is a merger of a general approach to OOIS development (as described by several sources
and integrated into a single process by ChiMu employees) and the specifics of the ABC project. The main
overall process described herein originates from previous ChiMu work and copy-written materials, and this
document maintains those copyrights.

7

v0.5

2 Introduction
ABC has a development process different from previous projects done by the DEF group. The differences
in the process were caused by ABC’s use of several new techniques, tools, and approaches:

1. Use Cases and OO models to help communicate requirements
2. An OO programming language for implementation
3. New tools for analysis and development
4. A more formal 3-layer architecture
5. A recently formed and larger team than on preceding projects

These new techniques and tools were recommended inputs into the ABC project/process in the view that
they would have benefits both to the ABC project itself and to subsequent XYZ projects that followed
ABC. All the new features were introduced at the very beginning of the team’s formation, and the team
needed to learn and evaluate the utility of these new features during the course of the project.

The primary goals of the ABC development process were to (1) support the ABC team in developing a
high-quality application that met the customers’ needs, (2) improve the quality of the development process
itself, by (3) incorporating the new features mentioned above. These goals are summarized in the ‘Vision
Statement’ for ABC:

The ABC project will develop an application that meets basic XYZ needs for quoting, booking,
and invoicing, and will begin deployment of the application by January 1st, 1999. ABC will be
developed with a strong attempt to use an effective, predictable, and repeatable Use-Case based
process and Object-Oriented architecture. ABC will be among the best designed and documented
software XYZ has ever built: a base for continued development and a good model for future
software.

Such a vision statement is part of the ABC process and is described in [McConnell 98 § 7].

2.1 Sources
The development process ABC uses is an integration of many different sources, and this document will
refer to and leverage these high-quality sources as much as possible. This section identifies most of the
major sources and where to get them.

The ABC development process came from many sources and forms. The sources include:
• Previous experience of the ABC team
• General XYZ standards
• Standard industry knowledge and (sometimes) practice
• Externally provided training and mentoring (e.g. ChiMu, SELECT, <Java Training>, Tech-ONE)
• Characteristics of the development tools (e.g. SELECT, Visual Café, ERWin, SourceSafe)

And the forms include:
• Written knowledge
• Group experiences
• Formal training
• Intra-team and inter-team interaction
• The “organic” growth from the above combination

Of these sources and forms, only the written knowledge from the general industry, external training, and the
project itself is easily referenced. This will provide a large bulk of knowledge about ABC, and is what this
document will be using. Alone, though, it will not enable a full understanding of the process, so it would be
beneficial to try to take advantage of other resources. For example, to utilize the related resources
mentioned in the overview: the people at XYZ familiar with ABC. Other forms of cross-team
communication (informal, presentations, combined working) would also be beneficial.

8 The ABC Development Process Chapter 2
Introduction

v0.5

These written sources include documented parts of the ABC process and documents of more general origin.

ABC Process Documents
Certain resources were formally part of the ABC process and the day-to-day or training activities of the
project. Most of these types of documents will be referred to within this document, but you may also want
to refer to some of them directly…

ABC Development Process …/public/ABC/Development/Process
ABC Development Progress …/public/ABC/Development/Progress
ABC Development Standards …/public/ABC/Development/Standards
ABC Learning Resources …/public/ABC/Learning

Specific References
MeterRock Definitions …/Standards/
ABC Progress Flow …/Progress/
ABC Risks …/Progress/
ABC Vision Statement …/Standards/
ABC Increment Template …/Process/
ABC Flow Template …/Process/
ChiMu Guidelines …/Standards/

External Sources
External sources have material that was (or could have been) visibly integrated into the ABC process. In
some cases, a technique was extracted and used directly with little modification (e.g. “Risk Management”
from [McConnell 98]). In other cases, the overall flavor of an approach was incorporated if not the
specifics (e.g. “Conceptual Integrity” from [Brooks 75]). And in some cases, no conscious attempt to use
an approach was made but they still provide a very good description of the process or context for the
process.

To make the external references a little more accessible, they are broken into a short, medium, and long
list*. The short list contains five books that are mandatory reading for fully understanding the ABC process
and how to generalize and apply it to other projects. The medium list is also extremely important, but is
more a broadening of the perspectives within the short list than directly applicable. The long list contains
much more depth. Finally, there is also a short technical list that is not directly on process but may help
understanding of OO systems in general.

Short List
Component-Based Development for Enterprise Systems Allen+F 98
Object Solutions: Managing the Object-Oriented Project Booch 96
Surviving Object-Oriented Projects, A Manager’s Guide Cockburn 98
Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design
Larman 97

Software Project Survival Guide McConnell 98

Medium List
The Mythical Man-Month Brooks 75
Controlling Software Projects DeMarco 82

* The very long list is available in the ChiMu Guidelines [ChiMu 98] document.

9

v0.5

Understanding UML: The Developer’s Guide Harmon+W 98
The Object Advantage: Business Process Reengineering with

Object Technology
Jacobson+EJ 95

How to Run Successful Projects O’Connell 94

Long List
Constantine on Peopleware Constantine 95
201 Principles of Software Development Davis 95
Peopleware: Productive Projects and Teams DeMarco+L 87
Managing the Software Process Humphrey 89
Debugging the Development Process Maguire 94
Dynamics of Software Development McCarthy 95

Short Technical List
Design Patterns: Elements of Object-Oriented Architecture. Gamma+HJV 95
UML Distilled: Applying the Standard Object Modeling

Language
Fowler 97

A Good Architecture for Object-Oriented Information Systems Fussell 96
UML: Unified Modeling Language, Version 1.1 Rational 98

2.2 Major Concepts
There are many important concepts in the ABC process, and these will be described in subsequent sections.
The following is a list of “buzzwords” that apply (or we would like that they apply) to the ABC process.
This is provided as a first exposure to some of the ABC process concepts.

Architected The desired architecture of the system is identified and verified early in
the development process

Blueprinted A specification of what is to be built and how it will be built is generated
as part of the process.

Coordinated Team members are actively informed about the state of the project and
supported in intra-team and inter-team communication.

Decentralized As much as possible, task organization is moved to the smallest effective
management unit.

Documented The process itself is documented as much as possible: first informally and
then more formally as that becomes possible and useful.

Generalized Common functionality is extracted and generalized into frameworks and
libraries usable by multiple parts of the application.

Incremental The system is divided into pieces that can be developed subsequent to
each other.

Iterative Particular parts of the system are explicitly refined over the life of the
project.

Measurable The state of the project is visibly measurable, and estimations can be
compared to actuals.

OO Most of the technical techniques are object-oriented (although this has
only a limited impact on the overall process).

10 The ABC Development Process Chapter 2
Introduction

v0.5

Public Information about the project is public to all the team members

Reviewed Each development cycle includes a review and improvement process to
improve the process.

Risk-managed Project risks are actively identified, ranked, and managed

Self-managing If coordination and lead activities are stopped, the development team will
continue the development process on their own accord.

Skilled Tasks generally require specific skills and are not immediately
interchangable between team members.

Standardized There is a continuous progression from guidelines to standards as the team
decides

Tool-supported As much as possible, development activities are supported by tool-based
automation

Unified It should appear that it is exactly one team, even just one developer, which
is building this system. All the different aspects of the process should
be conceptually integral to each other: they are just different views of
the same process.

Use-case based Use-cases are one of the techniques used for gathering

Verified All deliverables and processes are tested for their value to downstream
customers.

The following chapters will detail what all these buzzwords mean to ABC and how they fit into the process.

11

v0.5

3 High-Level Process
This chapter describes the ABC process starting from a macro-level process and progressing down to a
granularity that includes the details of incremental development, use cases, and high-level architecture. All
together this gives a good feel for the overall high-level process. The next chapter will delve into team
structure, coordination, and a much more detailed process.

Organization
Most sections with this chapter and the next start have a standard structure. Each of them that starts with a
process diagram, walks through that diagram to describe its salient characteristics, and then defines any new
terminology. This is followed by a discussion of the process concepts. Finally the section can cover the
specifics of the actual ABC process and contrast it to the described process.

Notation Description
The following notation is present on the diagrams within this chapter. Further graphical items will be
defined when they are first encountered.

End-UserDeliverable Deliverable

Released Software

(1) Flow of information or documents
(2) Construction of deliverable

Flow (with feedback)

Part Part of Deliverable

The following are some important definitions for the above:

Work Product “The tangible result of work performed.” [McConnell 98]

Deliverable A defined work product that will be used as the input to another process or
released outside the team. Deliverables are documented to describe what
receiving parties can expect of them, and they are tracked as part of project
management. “Any work product that must be delivered to someone other than
the work product’s authors.” [McConnell 98]

Process A collection of tasks/work that produce deliverables. In this document, processes
are performed or controlled by humans: they have the same meaning as in a
physical data flow diagram. See [DeMarco 78]

Note that the icon for a deliverable is a rectangle of the particular size and with the textual format indicated
above. Rectangles that have other sizes, shapes, and textual formatting do not usually have the meaning of
a deliverable, but may instead be just for visual grouping, to indicate a subsystem, or to identify some
interesting entity that will later.

12 The ABC Development Process Chapter 3
High-Level Process

v0.5

3.1 Macro-level Process Model
The macro-level process is abstract up to the point of approximate coincidence with almost all software
processes. See the following references to correlate this model with other macro-level processes: [Allen+F
98 § 12.3], [Booch 94 § 3], and [Larman 98 § 2.3].

Copyright (c) 1997, 1998 ChiMu Corporation

Feasibility Study

Requirements

Preliminary
Analysis

Development

Blueprint

SystemApproach
Existing

Functionality

Users

Estimations

Team

Development
Benefits

Assumed Approach

Deployment

Walkthrough
Walking through the above diagram, first the feasibility team works with the users to conceptualize and
evaluate the feasibility of a software project. This feasibility study includes identifying the users’
requirements, a preliminary analysis of what building a suitable system would entail, and estimations of the
cost and time required. The feasibility study primarily returns a “GO” or “NO GO” answer, but it also
produces deliverables that can benefit the development process or other projects that are considering similar
requirements. If the feasibility study say “GO” we move into the next stage.

Next, the development team begins development of the software systems. During development they do
more detailed analysis and system design to create a much more precise and accurate blueprint of what they
will be building. This blueprint is then used to construct the system. When the system meets the detailed
requirements it can be moved to deployment.

Finally, deployment integrates the system into the users’ business process.

Definitions
One unusual deliverable in the above diagram is named the “blueprint”. Blueprints will be covered more in
upcoming sections, but for now a short definition is:

13

v0.5

Blueprint A specification of what a user desires and what a development team will build.

The term “blueprint” should give the general feel of how an architectural blueprint fits into the building
process and not be associated with its actual physical manifestations.

ABC Specifics
This macro-level process is instead innate to ABC’s project lifecycle and current activities*. ABC is
currently developing a system based on the feasibility study in 1997, and that development is for
deployment to XYZ in 1998. ABC has deliverables from the feasibility study in the forms of the Provision
analysis model, high-level use cases, some ER models, and several other forms of requirements. We also
have an estimated completion date based on business requirement and previous experience developing these
types of systems with this approach†.

3.2 Incremental Development
The first important detailing of the macro-process is to include the concept of incremental development.
Incremental development changes the development stage by breaking it into portions (increments) that
produce system deliverables before the final deployment stage. These intermediate deliverables can be
released to the end-users to get feedback on whether it is heading in the right direction to meet their needs.
More importantly, the process of building these increments enables the development team to experience a
full development cycle without using all the project lifetime. This allows the development team to:

• Learn and experience the full development process on manageable amounts of functionality
• Correct mistakes in the architecture, tools, design, and processes
• Discover what you don’t know you don’t know (WYDKYDK)‡ earlier
• Produce truer, fact-based, estimates of the project’s timeline
• Monitor progress more precisely
• Develop a repeatable rhythm

For other perspectives and details on incremental development, look at [McConnell 98 § 5, 11, 12],
[Cockburn 98 § 4], and [Allen+F 98 § 12.3]. Note that McConnell uses the term “Stage” in approximately
the same meaning as ABC uses the term “Increment”. There is also some variation in whether an increment
includes continued requirements and analysis work, or only design and construction. For ABC an
increment explicitly includes continued requirements work.

* The macro-level process is also so abstract and inherent to software development that it is not actively discussed
within ABC in any form.
† These feasibility estimates must have extremely low confidence levels: this is the first project in XYZ to use this
approach and the industry does not have enough general knowledge to provide good estimates for an unknown new
environment.
‡ [Cockburn 98]

14 The ABC Development Process Chapter 3
High-Level Process

v0.5

Development

Feasibility Study

Requirements

Preliminary
Analysis

Increment-1
Blueprint

System

Approach

Existing
Functionality

Users

Estimations

Team

Assumed Approach

Release

Increment
Plan

Deployment
Requirements

ImprovementsReview &
Improve

Increment-0

Increment-N
Blueprint

System

Approach

Existing
Functionality

Increment
Plan

Requirements

Review &
Improve

Walkthrough
In the incremental process diagram the feasibility study and deployment stages are the same as in the macro-
level process without incremental development. The changes are all to the Development stage which is now
broken into a number of increments (shown as 2+1) that are each as complete as the previous whole
development box.

Increments
The difference between the increments and the previous whole development is that each increment will only
deal with a portion of the whole, deployed system. Each increment may be restricted by only dealing with:
(1) a subset of the use cases, (2) a limited amount of business rules within a set of use cases, (3) common
cases or exceptional cases, or (4) a simpler technology architecture than will ultimately be required.
Portioning the increments requires proper planning, so one of the first tasks development does is to plan the
sequence and contents of each of the increments. All the increments do not need to be fully specified (the
work in the increments will help to fully-plan later ones), but an overall concept of increment progression
should be thought out and the immediately subsequent increment needs to be fully determined. See the
following discussion subsection for more on increment progression.

This increment plan is then used along with the other requirement sources to define the blueprint (the
covered functionality) and the other exit criteria (e.g. whether or how the database is used) of a given
increment. As the increments progress, the increment plans for subsequent increments can be detailed and
refined.

Review & Improve
The next major change is within the increments themselves. Each increment has a Review & Improve
process within them. This is to support the continued refinement and improvement the incremental cycles
will allow. During each increment, the team reviews the code, designs, tools, architecture, and processes to
see what should be improved. All necessary changes should made as soon as possible so they are available
as part of the existing functionality for the subsequent increment. The team should also revisit all the
standards to correct and further document them based on the increment’s experience. Although this might

15

v0.5

be similar to a post-mortem for a project, it has one obvious difference: these improvements clearly benefit
the current team because they will be used in all the subsequent increments. Although some of these
activities will be done as part of the increment’s system development, it is important to identify that they
must be done before the increment has fully completed.

Increment-0
A final, very notable change is that there exists an Increment-0 even before the feasibility study has been
completed. Increment-0 is an increment focused on learning and experiencing the approach that will be
used to develop particular types of systems. Increment-0 can be started before the feasibility of a particular
project is verified, especially if the approach used will be significantly different from what a team has
experienced before. It is more of a team training and preparation phase than part of any particular project,
but it should be considered mandatory before entering project development. If the approach to be used is
similar to previous approaches for the team, than the Increment-0 should be very short. Increment-0 should
have a deliverable like any other increment, but it should be very simple in breadth and should be
considered a throwaway.

Increment-0 can also help the estimation process for the feasibility stage by providing actual (although
preliminary) data for a new development process. Since the goal of feasibility estimates is to correctly
predict the actual time the project will take, this initial data is very important.

Summary of Walkthrough
Feasibility and Deployment were unchanged, but development stage is now divided into planned increments
that tackle only part of the full system’s complexity and these increments can build upon both the code and
the processes developed in the previous increments.

Definitions
Increment (1) A portion of a system’s functionality that is built together. Increments limit

immediate scope, build upon previous work, and support changes in goals,
understanding, and processes during a full project’s lifecycle.

(2) The development effort used to build an incremental work product. In the later
context, an Increment has defined deliverables and other exit criteria, which will
be reached by the processes within the increment.

Increment-0 An increment focused on preparing the development team to use a particular
approach for developing systems. This includes both individual
training/experience and group training/experience.

Increment
Product

A work product resulting from an Increment’s work.

Release An Increment Product that is given to external teams (especially the end users) for
their evaluation.

Deployment A release that will go into user production: it will be integrated into the business
process and used to record business information. Deployments must be
subsequently to prevent harm to the business process and loss of information.

Discussion

Requirement Changes
An important concept is that increments should controllably allow and disallow requirement changes.
Requirement changes can come in at the beginning of an increment while the blueprint is still being created,
but after that blueprint is externally frozen, all subsequent requirement changes will be considered input to

16 The ABC Development Process Chapter 3
High-Level Process

v0.5

the subsequent increment. This allows the development team to have a stable model to implement, allows
the user to change requirements (at specific points in time), and makes the cost of requirement changes
more visible to all parties. This last point may be the most important, for it makes sure requirement changes
are visible and their benefits are evaluated against the time and other costs they will consume. Unevaluated
changes are the ones that make projects fail: “[A successful project has a] ruthless focus on the development
of a system that provides a well-understood collection of essential minimal characteristics” [Booch 94].

Project Management
Project management for incremental development is somewhat difficult with current tools. See
[McConnell 98] and [O’Connell 94] for suggestions about project management approaches and tools. ABC
originally used two Microsoft Project files to manage the detailed internal deliverables and dependencies.
One file contained the template for a generic Increment (see […]) including the inputs and outputs from that
increment. The main project file contained the full serialized set of increments (and iterations), which was
constructed by inserting the template file for a given increment and hooking its connections up. Although
this was a workable solution, it was time-consuming and not of the greatest benefit to the team. It was
subsequently replaced with the Process-Flow diagram (see the next chapter), but now both are in use for
different purposes.

Increment Progression
Each increment focuses on a portion of the completed systems functionality. Planning this progression
requires optimizing the growth of the team, the growth of the system’s architecture, and the growth of
delivered functionality. The following is a standard increment optimization order that deals with the bigger,
longer-impacting issues up front: the team and the architecture. The highest priority in Increment-0 and
Increment-is making sure the whole team has learned all the basic techniques they need and has gained
experience with the type of system they are building and the development process. Next in priority is doing
a good architectural test: building a complete vertical slice of the application with most of the major issues
addressed. This should be completed by Increment-1. Next in importance is supporting the jelling process
of the team and continued growth in using the development tools and the more detailed processes. By
increment-3 all these concerns should have stabilized at a higher level and the team can be focusing on
completion of functionality. A visual representation of a four-increment progression might look like the
following diagram.

17

v0.5

0

10

20

30

40

50

60

70

80

90

100

0 Inc-0 Inc-1 Inc-2 Inc-3 Inc-4

Experiencing
Basic-Techniques
Architecture
Cross-Experience
Jelling
Tools
Advanced-Techniques
Completion

ABC specifics
ABC has been mostly successful in using an incremental development process almost identical to that
described here, but it has not become a repeatable process due to some deviations and a limited number of
increments progressed through so far. The current increment is likely to establish the full repeatability and
rhythm of the incremental process.

ABC had an Increment-0 that focused on the whole team getting a feel for all aspects of the development
process on a very small example. This was followed by Increment-1.1, which dealt with creating a booking
(and was only single-user). This was followed by Increment-1.2, which further expanded the booking
functionality. Finally, Increment-1.3 focused on bringing the database and related activities into the
development cycle. Originally this was followed by Increment-2, but that was put on hold as a significant
modification to Increment-1 functionality was requested. These requested changes lead to an Increment-1b,
which had a similar focus as Increment-1 but different requirements (i.e. a completely different blueprint).
Increment-1b brought in the 1.3 database process. As of this writing (September) we have returned to mid
Increment-2.

Increment-0
Increment-0 lasted several weeks because of the large amount of technical and process differences for the
ABC project, and by the end of the increment the whole team had initial experience in a broad range of new
areas as well as how they might fit together. Team members were exposed to almost all aspects of the
approach on a limited scale. We also started refining the process to work better in the XYZ and team’s
environment.

18 The ABC Development Process Chapter 3
High-Level Process

v0.5

Unfortunately for time considerations Increment-0 could not be done in parallel to the feasibility study
because that study had already been completed. So Increment-0 was chronologically located in the
Increment-1 position, which also means it could not be used for the estimating process in the feasibility
study. Finally, Increment-0 only superficially dealt with the database and related activities. This was the
most significant uncovered part of the process.

Increment-1
Increment-1 continued the bringing-up-to-speed of the whole development team, but it was now oriented to
releasable functionality. During this increment development team members started to specialize and
increase their skills, and as these skills improved, intra-team organization and dependencies became the
biggest issues. These issues will be discussed in subsequent sections.

Increment-1b
Although Increment-1b started in a strange fashion (minor UI changes transitioned into significant
functionality changes), it finished much like any earlier increment might. The review and improve process
within this increment produced the first complete set of internal deliverables, so the team had developed a
much better understanding of the process. This was the first release to include database functionality.

Increment-2
Increment-2 just started as of this writing but it already has a much nicer “wave-front” of subteam progress.
It also has the best definitions of deliverables and dependencies, which should make for a relatively smooth
increment.

3.3 Use Cases and Conceptual Models
Adding use cases* to the development process can produce many changes. First, it simply provides a new
tool for communicating with the user and formalizing their needs. Second, it hooks the analysis process
into producing an OO conceptual model. Third, it strongly encourages focusing on what a user’s
environment needs, instead of what a system can do. Fourth, it can lead to endless debates of what
granularity use cases should be, what the difference between a use case and a scenario is, and so on. Of
these, the first two are the most important to discuss as part of a development process.

Use cases are used as part of eliciting requirements from the user and creating “blueprints” for the desired
system. Blueprints are the collection of documentation that is used to communicate what a user desires and
what a development team will build. Blueprints could take any number of forms, and the most important
property is that they work: they provide a good (sufficiently precise and accurate) communication vehicle
between the development team and the users. ABC’s process uses UI mockups, narratives, use cases,
conceptual models, data models, correlation notes, and other requirement documents as part of the blueprint
for a system. Some of these documents are more useful than others (UI mockups are by far the most useful)
and others are just legacies of the preliminary analysis more than currently active parts of the blueprint
deliverable. But all sources are useful until they are superceded by their functional equivalent.

* See [Allen+F 98 § 4.1], [Larman 98 § 6], [Jacobson+EJ 95], [Jacobson+CJO 92], and [Jacobson+GJ 97] for a
detailed discussion of use cases.

19

v0.5

 Internal Blueprint

System

External Blueprint

UI Mockup

Use Cases

Requirements

Narratives Conceptual Model

Glossary

User Data View

Sequence Dia

UML Models

User CRCs
CRCs

Correlation

Walkthrough
The whole box represents the entire blueprint deliverable. End users are on the left and developers are on
the right. This represents the different perspectives on the Blueprints. Although all of it maters to both
sides, much of the development team want it more processed (across the centerline) towards development
than in the form the end users use. The diagram is only approximate and a first level simplification*: for
example, the UI Mockup deliverable progresses from being very loose and user focused to being much
more directly applicable for development.

User Requirements
The different deliverables on the left (around the end users) are many of the different tools we used or
considered using to elicit requirements from the user. Of these, the top requirements box is for anything not
elsewhere classified. The UI Mockup only need to be purely visible mockups: they do not need to be
functioning prototypes unless it is to communicate a requirement. Narratives and Use Cases are the main-
stream definitions in the resources mentioned above. User CRCs are the results (e.g. CRC cards) of doing
Class-Responsibility-Collaboration sessions with the end users (see [Wilkinson 95] and [Wirfs-
Brock+WW 90] for more information). ABC does not use this process although it was introduced as part
of the Increment-0 training stage. Finally, the User Data View is composed of ER models and similar data
models that may be helpful in communicating to some users. These are generally subsumed in the
Conceptual Model described below.

Modeling
Running along the centerline are the Conceptual Model and the Glossary. The Glossary contains the
business terms for the users and is strongly linked to their daily business terms (and ideally agrees with the
narratives). The Conceptual Model is an OO model of the users’ business sufficient to describe what our
system needs to understand for it to function (see [Fowler 97a], [Fowler 97b], [Larman 98 § 9.3]). For
ABC, the conceptual model includes primarily Class and Sequence diagrams.

* The diagram will get more detailed and include iterative formalization processes on most of the
deliverables when we get into the full team development process.

20 The ABC Development Process Chapter 3
High-Level Process

v0.5

Internal
The full internal blueprints would also include architecture, framework, and other considerations but these
will be addressed in the next section.

Interconnection and Correlation
All these different deliverables better be describing the same system or we will have serious loss of quality.
It is difficult to have a good communication channel when two messages are being mixed together. The
deliverable diagram shows the flows and feedback between deliverables, which support verifying they are
really describing the same system. Some of these are normal parts of the use case development process: for
example, using Sequence diagrams to connect the Use Cases with the Conceptual model. Other of these are
commonly unmentioned as part of the development process: for example, the functionality and data in the
UI mockups should be verified to agree with the behavioral and information models of the Conceptual
Model. These additional correlations are very important to producing a correct, consistent set of blueprints
for the development team to use.

Definitions
Blueprint A specification of what a user desires and what a development team will build. A

software blueprint could take many forms, but within ABC it is a combination of
UI mockups, use cases, conceptual models, correlation notes, and other
requirements documents.

Conceptual
Model

An OO model of the users’ business sufficient to describe the external
functionality of a particular system.

Discussion
Because all of these deliverables are only as necessary as they are truly useful in reality, it is important to
choose the most effective of them from both sides’ perspectives. To really test this, you need to take an
approach, run it through earlier increments, and get all parties feedback on what is useful.

ABC Specifics
UI mockups provide the dominant, standardized and documented communication vehicle with the users.
ABC is not heavily using use cases, but they do augment the process and they are continually improving and
becoming more useful. Earlier ABC increments had few narratives to go with the Use cases, which made
them difficult to put any meat into. ABC heavily uses a conceptual model, but this is primarily to support
correlation and especially as an internal blueprint so multiple teams will be building the same system. The
users do not seem particularly comfortable communicating with information models. A number of other
requirements documents augment these standard documents, but they have not yet been formally defined.

3.4 Implementation Architectures
A system’s architecture has both little visible impact on the end users (other than possible UI restrictions)
and significant impact on the internal development process. This impact comes in two forms: first, if you
have an architecture-driven development process you need to focus on constructing and verifying the
architecture early in the project. Second, the specifics of the architecture will determine what internal
deliverables are useful, what roles are necessary, and how subteams interact. See [Booch 94], [Brooks 75],
and [Fussell 96] for some discussions of architecture, process, and information systems.

21

v0.5

ABC had a strongly architecture-driven development process with a
very early-defined overall architecture and continuous efforts to
standardize frameworks and detailed sub-architectures. It was
assumed that a three-layer (UI, Domain, Storage), two-tier architecture
would be appropriate as an overall architecture. A three-layer
architecture is a mainstream architecture for OOIS and use-case based
development and conceptual modeling strongly encourage an explicit
domain layer. The domain layer supports traceability and testing
against the conceptual model. In any case, this was a good enough
match for requirements that initially the development process could
focus on other issues.

Most of the deliverables from the use-case based process can directly
drive the development of one or more layers in the three-layer
architecture. The conceptual model primarily drives the Domain layer
and the Storage layer. The UI mockups primarily drive the ultimate
UI development. The use cases can drive the testing of both the
Domain layer and the UI layer. All of these blueprint flows are
primarily forward, but each of the implementation layers can provide
important feedback to the blueprinting process and the actual
requirements.

Storage

Database

Domain

UI

The following diagram shows the architecture-level deliverable flow within an increment.

System

UI Mockup

Use Cases

Requirements

Use Case Tests

Narratives Conceptual Model

Glossary

Domain Model

UI

User Data View Storage Model

Domain TestingSequence Dia

Design Models
Interfaces

Java Code

Design Models
Interfaces

Java Code

UI Testing

UML Models

GuidelinesFrameworks
Architecture

Tools

Processes

Standards

User CRCs
CRCs

Mapping
Logical

Procedures
Physical

Correlations

This diagram finishes the specification of the high-level development process.

3.5 Summary

22 The ABC Development Process Chapter 3
High-Level Process

v0.5

Approach

Increment
Planning

Increment-1

Blueprints

Specify
Approach

Conceptual Model
UI Mockups

Correlations
SystemInc. Scope

ImprovementsReview &
Improve

Tools
Techniques

Architecture
Standards

Increment
Planning

Existing
Functionality

Approach

Increment-2...

Blueprints

Specify
Approach

Conceptual Model
UI Mockups

Correlations
SystemInc. Scope

ImprovementsReview &
Improve

Tools
Techniques

Architecture
Standards

Increment
Planning

Existing
Functionality

Users
Requirements Changes

Increment-0

System

Review &
Improve

Tools
Techniques

Architecture
Standards

Training
Experiencing

Jelling

Modifications to Use Cases
UI Changes
Modified/Detailed Business Rules
UI Guidelines Changes

Use Cases (and Naratives)
UI Mockup
Business Rules
Information Details
Other: Informal Descriptions

Requirements Requirements Requirements Changes

Exit
Criteria

Exit
Criteria

Release Release
Feasibility Study

Requirements

Preliminary
Analysis

Estimations

Assumed Approach

23

v0.5

4 People in the Process
In the previous chapter we only discussed deliverables and made little mention of how people would be
involved in developing those deliverables. Now we need to bring people in the process and show how the
goals of development, organizational issues, and the team members themselves integrate together.

This chapter begins with a section introducing some concepts for the roles within a development team and is
immediately followed by putting team-roles onto the high-level process described in the previous chapter.

4.1 Introduction
This section provides a very high-level introduction of some of the concepts and goals for the roles within a
development team. This is to provide context for the more detailed discussion of roles within a ten-person
project and to connect to other resources that discuss these topics. These other resources include [Brooks
95, 86], [Booch 94], [XYZ-97], and [… (DeMarco, Constantine, …). The whole section can be quickly
skimmed if it seems very familiar.

Notation Description

Project Role

Subteam Lead

Primary Communication

Definitions

Project Role A set of responsibilities and relationships that one or more individuals can hold. A
single individual can hold multiple roles within a project at one moment in time,
and role-holders can change during the project’s life. Rarely can the
responsibilities within a role go away, so someone must always be officially or
unofficially be in a particular role.

The Simplest Process Model
The simplest approach to building a software system is

24 The ABC Development Process Chapter 4
People in the Process

v0.5

System
Requirements

The users state their requirements, and the system is built based on as much of those requirements as it can
handle. With this model we simply need two roles: a user and a developer.

System
RequirementsDeveloper

Responsible for the specification and
implementation of entire system

Responsible for describing the process, needs,
and wants of the target users

Understand the day-to-day hands-on aspects of
the business

User

Definitions

User Responsible for describing the process, needs, and wants of the target users.
Responsible for evaluating the requirements, blueprints, and system releases.
Understands the day-to-day hands-on aspects of the business

Developer Responsible for the specification and implementation of the entire system.

This is a great model for software development*: All requirements can be worked out directly between the
user and the developer, communication cycles are extremely quick, and there is relatively little chance of
long-term miscommunication. The system will have excellent conceptual integrity and will tend to be much
more stable and maintainable than if more (non-superior) development resources were added to the task†.
There are two severe drawbacks: (1) a single developer will take a long time to develop any significant-
sized system, and (2) a single developer will probably initially lack all the necessary development skills
required to build certain types of systems (which will compound the previous problem).

The problem is how to scale the development process without losing too many of the benefits from having a
single developer do all the work. Or stated another way: how do you make many people’s work appear to
be just one (incredibly skilled and productive) person’s work. The question stated this way already leads to
its own answer: try to make many people’s work appear to be just one (incredibly skilled and productive)
person’s work. The realities of a team and its environment can cause all types of variations on the exact
approach, but this unity should always be the goal. The following sections describe one variation for
maintaining unity as we scale to a ten-person project.

Splitting Specification from Implementation
With the previous high-level model, the Developer role agreed to the requirements and implemented that
agreement. If we are to maintain the same level of unity in purpose and not overburden the users with a lot

* The “perfect” model is where the user and the developer are exactly the same person.
† [Brooks § ??]

25

v0.5

of different people asking inconsistent questions, we will still need a single person overseeing and
responsible for the whole specification. Likewise, if the code is to look like it came from one person, we
will need a single person overseeing and responsible for the whole development. Finally, if we split
specification from implementation we will need someone who maintains the unity of purpose for the whole
system: who makes sure specification and implementation meet the goals (time, functionality, resources) of
the project as a whole. This gives us a three-way split of our previous developer.

System
Requirements

Project Lead

Responsible for quality, consistency, and
functionality of the whole system

Designs, Implements, Tests, and Documents
System

Reviews and supports defining the external
architecture

Integrates, tests, packages, and releases
system

Implementer
Responsible for the quality, consistency, user-satisfaction, and

implementability of the external specification of a system
Overseas and supports all requirements aspects for a project
Reviews and assists in blueprinting process
Gathers Requirements (UI Mockup, Use Cases, ...) From Users
Assists turning requirements into blueprint, and blueprints into

requirements changes
Feedback and Verify Development Understanding of Requirements
Prepare Users for Releases

Specifier

Responsible for the specification and
implementation of entire system and
the development process to produce it

Coordinates and Supports Team
Predicts Dependencies and Aggregates

Schedules
Removes Obstacles

Responsible for describing the process,
needs, and wants of the target users

Responsible for evaluating the
requirements, blueprints, and system
releases

Understand the day-to-day hands-on
aspects of the business

User

Blueprint

Definitions

Project Lead Responsible for the specification and implementation of entire system and the
development process to produce it. Coordinates and supports development
teams. Predicts dependencies and aggregates schedules. Removes obstacles.

Specifier Responsible for the quality, consistency, user-satisfaction, and implementability of
the external specification of a system. Overseas and supports all requirements
aspects for a project. Reviews and assists in blueprinting process. Gathers
Requirements (UI Mockup, Use Cases, ...) From Users. Assists turning
requirements into blueprint, and blueprints into requirements changes. Feedback
and Verify Development Understanding of Requirements. Prepare Users for
Releases

Implementer Responsible for quality, consistency, and functionality of the implemented system.
Designs, Implements, Tests, and Documents System. Reviews and supports
defining the external architecture. Integrates, tests, packages, and releases
system

As soon as we add more people to a team we need to add roles like the project lead, that continually work
on keeping the one-mind property to the project. Depending on the size of the teams and the skills of
individuals, a single person could play more than one role, but maintaining the overall unity will be an
additional overhead of the team process.

The above roles also have a newer process beneath them that brings in the possible need for a blueprint
(both external and internal) shared between the implementers, the specifiers, and the users. This will
become especially necessary as we add more team members to the implementation side.

26 The ABC Development Process Chapter 4
People in the Process

v0.5

System
Requirements Blueprint

Management
Next we need to take a diversion to put the project in the context of an overall development organization.
Organizational management needs to not directly change a project’s goals, but there are many
organizational needs surrounding any given project. This connection to other teams, project resources, and
upper management are essential.

System
Requirements

Project Lead

Group Manager
Responsible for the success (External and

Internal) of all projects undertaken by
her/his teams

Handles management buyin, funding,
external representation, coordination,
Hiring, Training, Tools, ...

Responsible for quality, consistency, and
functionality of the whole system

Designs, Implements, Tests, and Documents
System

Reviews and supports defining the external
architecture

Integrates, tests, packages, and releases
system

Implementer
Responsible for the quality, consistency, user-satisfaction, and

implementability of the external specification of a system
Overseas and supports all requirements aspects for a project
Reviews and assists in blueprinting process
Gathers Requirements (UI Mockup, Use Cases, ...) From Users
Assists turning requirements into blueprint, and blueprints into

requirements changes
Feedback and Verify Development Understanding of Requirements
Prepare Users for Releases

Specifier

Responsible for the specification and
implementation of entire system and
the development process to produce it

Coordinates and Supports Team
Predicts Dependencies and Aggregates

Schedules
Removes Obstacles

Responsible for describing the process,
needs, and wants of the target users

Responsible for evaluating the
requirements, blueprints, and system
releases

Understand the day-to-day hands-on
aspects of the business

User

Blueprint

A number of variations can exist for handling management roles and relationships (see [Brooks 97]). The
one showed here is a variation that seems closest to modeling the organizational responsibilities placed on
XYZ’s group managers (ASMs). A single person can assume both the Group Manager role and the Project
Lead role if the managerial responsibilities are light or a particular project does not need much lead
activities (i.e. it is self-leading). But because a group manager may have multiple projects, large projects,
or recently formed teams, successfully occupying dual-roles is unlikely. Some of the responsibilities
defined for the group manager and the project lead can be exchanged or shared.

Roles into Teams
The above model still assumes a single implementer and specifier will be enough for a project. The realities
are that many people could be needed to make sufficient forward progress. We can add people to both
specification and implementation if these activities are still overseen by individuals and the teams act as one
unit. To do this we still have the specifier and implementer (now referred to as architects to match common
usage) and they are still responsible for the entire body of work done within their teams. But as their teams
grow, they will need to change from being focused on doing the development itself to making sure the team
members can do the development.

27

v0.5

System

Designs, Implements, Tests, and Documents
System

Gathers Requirements (UI Mockup, Use
Cases, ...) From Users

Assists turning requirements into blueprint,
and blueprints into requirements
changes

Feedback and Verify Development
Understanding of Requirements

Project Lead

Group Manager
Responsible for the success (External and

Internal) of all projects undertaken by
her/his teams

Handles management buyin, funding,
external representation, coordination,
Hiring, Training, Tools, ...

Requirements Team

Blueprinting

Implementation Team

Responsible for quality, consistency, and
functionality of the whole system

Supports all development activities
Helps coordinate with external implementation

teams
Specifies, Documents, and Diseminates

Internal Architecture
Reviews and supports the external architecture

Implementation Architect

Responsible for the quality, consistency,
user-satisfaction, and implementability
of the external specification of a
system

Overseas and supports all requirements
aspects for a project

Reviews and assists in blueprinting
process

Specification Architect

Responsible for the specification and
implementation of entire system and
the development process to produce it

Coordinates and Supports Team
Predicts Dependencies and Aggregates

Schedules
Removes Obstacles

Responsible for describing the process,
needs, and wants of the target users

Responsible for evaluating the
requirements, blueprints, and system
releases

Understand the day-to-day hands-on
aspects of the business

User Team

Responsible for the correctness, quality, and
utility of the blueprint of the system: UI
Mockups, UML Models, correlations

Correlates and verifies all requirement and
blueprint specifications

Helps verify and get signoff of blueprints from
both users and implementation teams

Work with development team to refine and
disseminate blueprints

Creates blueprint testing capabilities

Requirements Blueprint

The other scalability change is to have a particular role focussed on making the blueprints, which is a
bridging relationship between specification and implementation.

This is the last high-level diagram before returning to the full development process described in the
previous chapter.

Summary
The goal of a development team is to produce a system that appears to be written by a single, incredibly
talented, and incredibly productive individual. This goal is approached by always keeping overall
architectural and project responsibilities in a few roles, and ultimately in a single role. All developers must
feel equally responsible for all aspects of the system, and everyone is responsible for building the standards
and approaches that will make the team act as a single unit. The role structuring is just to make sure
someone is always looking out for these goals and that there is always a unifying solution possible.

4.2 Full Team-Role Model
If we return to our overall deliverable flow from the previous chapter (see section [??]) we can now overlay
the team roles onto it. This gives us a full team-role model of the following:

28 The ABC Development Process Chapter 4
People in the Process

v0.5

System

UI Mockup

Use Cases

Requirements

Use Case Tests

Narratives Conceptual Model

Glossary

Domain Model

UI

User Data View Storage Model

Sequence Dia

GuidelinesFrameworks
Architecture

Tools

Processes

Standards

User CRCs

Fr
am

ew
or

ksTesting

Testing

Designs and Implements UI
Connects UI Functionality to Domain Layer
Supports Abstracting Library/Framework

Functionality
Implements and Suggests Changes to Common

Look and Feel

Responsible for the correctness, quality, and
utility of the blueprint of the system: UI
Mockups, UML Models, correlations

Correlates and verifies all requirement and
blueprint specifications

Helps verify and get signoff of blueprints from
both users and implementation teams

Work with development team to refine and
disseminate blueprints

Creates blueprint testing capabilities

Scours for ways to make development quicker and
more resilient

Works with team to identify internal and external
software

Evaluates Software
"Prepares" framework code for client usage

Support Database Storage Issues for Domain
Responsible for Database Functionality,

Quality, and Consistency: Documentation,
Standards (including externally imposed),
Testing, and Performance

Help To Identify Framework Needs

Responsible for the Effectiveness and Stability
of the Development Environment

Tool Identification, Installation, Training,
Scripts

General Process Automation Support

Designs and Implements the Business/Domain
Model

Handles Storage (Mapping and DB) Specifics for
Domain Classes

Works with Conceptual Modeling to refine classes.

D

Gathers Requirements (UI Mockup, Use
Cases, ...) From Users

Assists turning requirements into blueprint,
and blueprints into requirements
changes

Feedback and Verify Development
Understanding of Requirements

Project Lead

Group Manager
Responsible for the success (External and

Internal) of all projects undertaken by
her/his teams

Handles management buyin, funding,
external representation, coordination,
Hiring, Training, Tools, ...

Requirements Team

Blueprinting
Storage Team

Domain Team

Frameworks Team

Integrates, tests, packages, and releases
system

Team (2) Prepare Users for Releases

Toolsmith

UI Team

Release Team

Responsible for the Functionality, Quality,
Consistency, and Documentation of a portion
of an application

All Teams

Responsible for quality, consistency, and
functionality of the whole system

Supports all development activities
Helps coordinate with external implementation

teams
Specifies, Documents, and Diseminates

Internal Architecture
Reviews and supports the external architecture

Implementation Architect

Responsible for the quality, consistency,
user-satisfaction, and implementability
of the external specification of a
system

Overseas and supports all requirements
aspects for a project

Reviews and assists in blueprinting
process

Specification Architect

Responsible for the specification and
implementation of entire system and
the development process to produce it

Coordinates and Supports Team
Predicts Dependencies and Aggregates

Schedules
Removes Obstacles

Responsible for describing the process,
needs, and wants of the target users

Responsible for evaluating the
requirements, blueprints, and system
releases

Understand the day-to-day hands-on
aspects of the business

User Team

Individually Responsible for the unity of their
portion of an application

Strongly supports work of other team members

Subteam Leads

Walkthrough
Most of these roles are the same as in the final version in the introduction. The main differences are: (1)
now the implementation architecture is taken into account and several subteams (UI, Domain, Storage,
Frameworks) are part of the implementation team, (2) there is a role explicitly for a toolsmith, (3) there is
an release subteam, and (4) the team-role model is overlaid on the full use case based flow.

Definitions

Discussion
There are two main reasons to divide the development team roles to match the architectural layering. The
first reason is that most developers will not initially be skilled in all areas of a system’s development, so you
need to allow them to focus. UI skills are different from database skills and both take time to acquire. The
second reason is more important: even if a single developer is able to help in more than one layer of the
system, it is important that they do not “cheat” and ignore the architectural layering. An architectural
layering is design to make a system more stable and scalable by limiting the ways a system is
interconnected. Layering enforces limited knowledge of layers above and of the implementation in layers
below. So a developer must make sure to focus first within one layer and not use inappropriate knowledge
of another layer to short-circuit the formal interfaces between them. Having separate roles (different hats)
reinforces that mentality.

Related to separate layering is the aspect that within any layer there is a single role (the subteam lead) that is
responsible for the standards and unity within that layer. The similarity of techniques and code within a
layer can be even more strongly reinforced if the subteam has constant encouragement to have a single
model.

ABC Specifics
A variation of the above team-role diagram has been in the ABC project from the beginning, but both the
current and planned roles have changed over the life of the project.

29

v0.5

Different team member’s within the ABC team have different feelings for the process. Some have felt it
was too industrialized, where an individual would only see a very small amount of the application. Others
feel that focus is good for them, although almost everyone has a desire to rotate through different roles in
the project. This rotation would be a good thing for improving the skills and maturity of the team, but
because ABC has a tight schedule the rotation has only been done in a couple cases so far. Further rotation
will occur in future increments.

4.3 Meter-Rocks: Getting Specific Enough to Manage
The process description so far provides an overview of the concepts, and is detailed enough to know the
type of work a team-member would be doing and how that impacts the development of the system. But
with a ten-person team it is not detailed enough to be manageable from either an individual’s or the whole
team’s perspective. To manage the project we need to get more specific within each of the increments and
detail what the internal deliverables are. The internal deliverables are referred to as meter-rocks: they are
deliverables sized for intra-team consumption and are smaller than milestones (for between teams) and
bigger than inch-pebbles (for an individual developer or a within a subteam).

Full Conceptual Model

User
Specification
(User Team)

UI Mockup-1

UI Mockup Changes

Conceptual Model
Changes

Other Notes

Narratives

(UI Team) UI Mockup-2

UI Standards Update

New Screens
Old Screens

UI2

UI3

Standards

UI Approach Update

UI4

New Widgets
Frameworks

Libraries

Cross Correlate &
Scope Select
(UI, Con, Proj)

Conceptual
Model-2

Conceptual
Model-1

(Con Team)

Use Cases
Glossary
Info Model

Behave Model

UI Mockup-3

Scope Specification

UI Mockup Changes

Conceptual Model
Changes

(Con Team)

(UI Team) (UI Team) UI Impl-1

Conceptual
Model-3 (internal)

(Prelim) Storage
Model-1

Logical
Physical

Build
Preliminary

Storage
Model (Sto)

Storage Approach

Storage Standards

Logical
Physical

Tools
Techniques

(Sto Team)

(Sto)
Storage
Model-2

Logical
Physical

DA / DBA
Review

(Da, Dba,
Sto)

DA & DBA
Feedback-1

Domain Approach

Tools
Techniques

Domain Standards

(Dom Team)

Build
Preliminary
Interfaces

(Dom)

(Prelim) Domain
Interfaces-1

New Types
Modified Old

(Dom)
Domain

Interfaces-2

(Dom)
(Prelim) Domain
Implementation-1

(UI Team) UI Impl-2

Correlate
(UI & Dom)

Domain
Implementation-3

Domain
Interfaces-3

(Dom)

(Dom)

Correlate
(Dom &
Storage)

Changes

Storage
Model-3

Logical
Physical

(Sto)

Changes

 User
Preperation
& Update

(Con)

Conceptual
Model-3 (external)

User Review
(User)

(Del Team)

Delivery Standards

Delivery Approach

(Del Team) Delivery-1

Database

UI Impl-3

Domain
Implementation-4

Domain
Interfaces-4

Storage
Model-4

Logical
Physical

(Del Team)

Database

Changes

(UI Team)

(Dom)

(Dom)

(Sto)

DA & DBA
Feedback-2

Delivery-2

Provision

Domain
Implementation-2

(Fra Team) Available Tools and
Frameworks

Descriptions
Evaluations
Techniques

Availability

DA Models?
Use Cases

UML

Use Cases
Info Model

Con: Conceptual Model
Da: Data Admin

Dba: Database Admin
Del: Delivery

Dom: Domain
Fra: Frameworks
Pro: Project Support
Sto: Storage
UI: UI

User: User Specification

Testing and
Acceptance

(Test)
Evaluation

Team Abbreviations

Inclusion Notes
Exit Criteria

DA / DBA
Review

(Da, Dba,
Sto)

DA / DBA
Review

(Da, Dba,
Sto)

DA & DBA
Feedback-1

Scope Criteria

Database

Con. Model Standards

Increment/Iteration Flow Template

30 The ABC Development Process Chapter 4
People in the Process

v0.5

UI Impl-4UI Impl-3

(UI, Pro) Technical Review

UI Standards-2

Standards

UI Approach-2
New Widgets

Frameworks
Libraries

(UI Team)

Domain-5Domain-4

(Dom, Pro) Technical Review

Dom Standards-2

Standards

Dom Approach-2

Frameworks
Libraries

(Dom)

Risks

Estimating

Effectiveness
New
Ranking

Review

Process
Problems

Team

Alternatives

Increment/Iteration: Review and Improve Stage - Template

Document

Detail

Review Notes
Resolutions

Review Notes
Resolutions

(Pro, ?, Da,
Dba, Ext)

External Team Review
Process, Standards,

Designs

ABC Specifics
The ABC team identified and defined its meter-rocks over the first few increments. These are documented
in detail in documents primarily owned by each of the subteams.

31

v0.5

5 Other Process Aspects

5.1 Risk Management
All projects have many types of risks, which need to be identified, prioritized, and ameliorated for a project
to succeed. The ABC process used a variation of the risk management process described in [McConnell
98]. Risk management is divided into specific identification phases and a continuous attempt to find
solutions that remove or reduce the risks.

Risk identification, prioritization, and initial antidote-identification is done during the Review and Improve
phase of an increment or increment-iteration. The process used is to ask the whole team to contribute and
describe new risks that have not identified before. Old risks are also revisited to see if they need a new
description. The new input is used to update the complete list and description of risks.

The team is then asked to give each of the risks a weighting from a limited number of total points. These
weightings are aggregated together to prioritize the risks (see the ABC Specifics for some discussion of
other alternatives). And the resulting ordered list is made public to the team.

Next the team focuses on the highest risks to identify possible antidotes for them. These antidotes are
documented and become the input into ameliorating activities during the lifecycle of the next increment.

A final activity would be to review how well the risks were ameliorated in a particular increment, and this
can be the first activity in the subsequent review and improve cycle.

Discussion
One important issue in risk management is trust. Can team members really speak out and say what risks are
present and brainstorm on what (sometimes-unpleasant) antidotes might work against those risks. This is
best solved by making the team feel comfortable, but this can be further augmented by making the risk
identification and ranking processes anonymous.

ABC Specifics
ABC has managed risks since Increment-0, and the risk process has always been anonymous based on
minority approval. Overall the risk management process seems to be useful: generally our top risks are
significantly removed within the next increment/iteration’s cycle, although we also have recurring and
cycling risks. It appears the development team feels the top risks are less severe than in earlier increments.

One difficulty ABC is having is getting sufficient participation in the risk identification and ranking.
Frequently only 60-70% of the team will contribute to the risk management process. This makes the
rankings somewhat unstable. It has also lead to dropping certain activities (like post-increment review)
because they were reducing the amount of contribution.

5.2 Success Identification

5.3 Increment Iterations

32 The ABC Development Process Chapter 5
Other Process Aspects

v0.5

Increment

Approach

Deliverable

Improvements

Existing
Functionality

Requirements Determine
Scope

Iteration Iteration Iteration

Requirements

Better Frameworks
Architecture Improvements
New Guidelines

Burnt Level Burnt Level

Specify
Approach

Evaluate
Exit

Criteria

Exit Criteria

5.4 Modeling Progression
UML supports and defines differing perspectives on a UML software model. There is a progression from
the user and requirements oriented conceptual model, through a general specification/design model, and
ending in a language and platform-specific implementation model. Depending on the type of model you are
looking at, UML notation may mean different things (unfortunately). See [Fowley 98] and [Larman 98]
for more information about UML perspectives.

The most important model in the development process is the conceptual model because it is part of the
blueprint that binds the development of a system to the users needs. The other models support improved
quality and documentation of code, and possible multi-platform implementations of a particular system.

Conceptual Model
User Communication
External Specification
Formalize Requirements
Business Process

Modeling

Implementation Model
Implementation
Environment Specifics (Language,
Libraries, Frameworks, Database)
Fully Detailed

Java Code
Interfaces

UML Models

Code
Source

Javadoc
Other (IDE)

Requirements

Design Model
Interfaces
Implementation

Specification
Architecture
Infrastructure

Source

UML ModelsUML Models
CRCs
Use Cases

Data Models

Interfaces
Javadoc

Patterns
Other

Patterns
Standards

ABC Specifics
The ABC modeling activities primarily focus on the Conceptual Model. The lack of active Design Model
activities has several causes. Primary among these is that the ABC architecture is well known and ChiMu

33

v0.5

already had artifacts to explain major design concepts within it. The ABC architecture document may cause
new artifacts to be developed. A second cause is the inability or ineffectiveness of the modeling tools to
handle the different modeling translations and ultimate translation to and from code. By bringing in a tool
like Together/J, we could have very transparent Implementation Model translation, but this tool seems to
still have scalability problems. A third cause is the lack-of-need to translate to other languages. All the
designs we have can be specified in terms of Java since it is the only target implementation language.

34 The ABC Development Process Chapter 5
Other Process Aspects

v0.5

35

v0.5

6 Appendix-A: Glossary

Type
Types allow you to think about the commonality of objects’ exteriors. They are the first conceptual
abstraction above Objects and immediately provide an enormous amount of ability to reasoning about
Objects. The amount of abstraction and formality associated with Types can depend on of the project or the
current perspective.

Definitions

Deliverable A defined work product that will be used as the input to another process or
released outside the team. Deliverables are documented to describe what
receiving parties can expect of them, and they are tracked as part of project
management. “Any work product that must be delivered to someone other than
the work product’s authors.” [McConnell 98]

Inch-Pebble A deliverable used to track progress within a subteam or for an individual. They
should generally take a couple days or less. InchPebbles are not used in ABC
project management, but are up to individuals and subteams to determine.

Increment (1) A portion of a system’s functionality that is built together. Increments limit
immediate scope, build upon previous work, and support changes in goals,
understanding, and processes during a full project’s lifecycle. (2) The
development effort used to build an incremental work product. In the later
context, an Increment has defined deliverables and other exit criteria, which will
be reached by the processes within the increment.

Increment
Product

A work product resulting from an Increment’s work.

Iteration (1) A refinement of an existing work product or process. (2) The development
effort within an increment used to bring an increment closer to its exit criteria.

Meter-Rock A deliverable that supports tracking progress within a development team and
coordination between subteams. MeterRocks are the primary unit to organize
activities within an increment. They should generally take about a week to
complete.

Milestone A large-scale deliverable that is used by external parties to track development
progress and coordinate inter-team dependencies.

Release An Increment Product that is given to external teams (especially the end users) for
their evaluation.

Work Product “The tangible result of work performed.” [SPSG]

Deployment A release that will go into user production: it will be integrated into the business
process and used to record business information. Deployments must be
subsequently to prevent harm to the business process and loss of information.

Process A collection of tasks that produce deliverables. In this document, processes are
performed or controlled by humans: they have the same meaning as in a physical
data flow diagram. See [DeMarco 78]

Increment-0 An increment focused on preparing the development team to use a particular
approach for developing systems. This includes both individual training and
group training.

Blueprint A specification of what a user desires and what a development team will build. A

36 The ABC Development Process Chapter 6
Appendix-A: Glossary

v0.5

software blueprint could take many forms, but within ABC it is a combination of
UI mockups, use cases, conceptual models, correlation notes, and other
requirements documents.

Conceptual
Model

An OO model of the users’ business sufficient to describe the external
functionality of a particular system.

User Responsible for describing the process, needs, and wants of the target users.
Responsible for evaluating the requirements, blueprints, and system releases.
Understands the day-to-day hands-on aspects of the business

Development
Team

Responsible for the specification and implementation of the entire system.

Project Lead Responsible for the specification and implementation of entire system and the
development process to produce it. Coordinates and supports development
teams. Predicts dependencies and creates schedules. Removes obstacles.

Specifier Responsible for the quality, consistency, user-satisfaction, and implementability of
the external specification of a system. Overseas and supports all requirements
aspects for a project. Reviews and assists in blueprinting process. Gathers
Requirements (UI Mockup, Use Cases, ...) From Users. Assists turning
requirements into blueprint, and blueprints into requirements changes. Feedback
and Verify Development Understanding of Requirements. Prepare Users for
Releases

Implementer Responsible for quality, consistency, and functionality of the whole system.
Designs, Implements, Tests, and Documents System. Reviews and supports
defining the external architecture. Integrates, tests, packages, and releases
system

Group Manager Responsible for the success (External and Internal) of all projects undertaken by
her/his teams.

Handles management buy-in, funding, external representation, coordination,
hiring, training, tools,

Specification
Architect

See specifier. Responsible for getting a team of developers to act like a single
specifier.

Implementation
Architect

See implementer. Responsible for helping a team of developers to act like a single
implementer.

Toolsmith The [Booch 94]

Lead (Subteam) Responsible for making sure a subteam works as a single unit and has consistent
standards and approaches for developing its deliverables. Subteam leads are
responsible for keeping the standards, deliverables, and approach documents up
to date. They need to strongly support their team in making forward progress.

UI Team

Domain Team

Storage Team

Release Team

Blueprinting
Team

37

v0.5

Requirements
Team

38 XYZ Development Standards Chapter 6
Appendix-A: Glossary

v0.5

ChiMu Corporation
1220 N. Fair Oaks Ave, #1314

Sunnyvale, CA 94089

Phone: 408 734-9068
Email: info@chimu.com

www.chimu.com

